DELOACH BLOG

How to Remove PFA'S from your Water

Posted by Anthony DeLoach, President on Feb 22, 2022 1:02:58 PM

The EPA and other world health organizations have recognized the dangers and health impacts of being exposed to PFASs.

Federal and State regulators are adopting new guidelines and laws for treating and removing PFASs. Often PFASs within potable drinking water systems or groundwater is contaminated with one of the various types of PFASs. There are over 4700 different variations of PFASs that have variations and at least three polyfluorinated carbon atoms.

Well over 10,000 types of PFASs are introduced into products. That can and has impacted the drinking water quality in the USA and other countries. 

So what are PFASs?

PFASs are fluorinated substances that include at least one fully fluorinated methyl or methylene carbon atom. They do not contain (H/Cl/Br/I atoms). However, any chemical with at least a perfluorinated (CF3) or a perfluorinated (CF2) is a PFAS. There are a few exceptions.

Different subgroups include surfactants, per fluorosulfonic acids, perfluorooctane sulfonic, perfluoro carboxylic, and perfluorooctanoic acids. Often referred to as PFOSs and PFOAs.

PFOS, PFOA, and other PFASs are persistent organic pollutants. They are often referred to as the "forever chemicals" because they do not easily break down in the environment. These organic contaminants are found in humans, animals, and our water supplies across the USA.

Read More

Topics: degasification, NSF/ANSI 61, Decarbonation, Safe drinking water, ansi61, Co2 ph, CO2 in water, Deagasification, hydrogen ion, DeLoach Industries, Inc.

Why Remove Carbon Dioxide (CO2) From Water

Posted by Anthony DeLoach, President on Jun 7, 2018 12:00:00 AM

The importance of removing Carbon Dioxide in the water!

Carbon dioxide exists naturally in nature as free CO2 and can be found in many water sources from lakes, streams, or other surface water bodies. Carbon dioxide occurs naturally in small amounts (about 0.04 percent) in the Earth's atmosphere. Monitoring CO2 levels in your water can be done through test kits or monitoring systems. When monitoring CO2 levels, it is important to note the concentration at which the monitoring needs to occur. Industrial level ion exchange systems should be monitored at a concentration typically 15–20 times greater than required for drinking water quality. Ion exchange systems used for high purity water production should be monitored at a concentration typically 40–50 times greater than what is required for drinking water quality. Due to carbon dioxide’s abundance and its role as the primary driver of climate change, there are concerns about increasing concentrations of this gas in the atmosphere. To reduce the amount of carbon dioxide in the atmosphere, people can reduce the amount of carbon dioxide released during energy production by using renewable energy sources and energy efficiency. Carbon dioxide can be captured and stored underground with carbon sequestration technologies.

Read More

Topics: degasification, water treatment, advanced treatment solutions, Decarbonation, ION Exchange Resin, carbon dioxide, CO2 in water, excess co2, hydrogen ion

Subscribe to our blog

Recent Posts