The Evolution of Water Treatment Technologies
Topics: water treatment issues, degasification, water treatment, Decarbonation, degasifier, decarbonation of water, DeLoach Industries, Inc., Industrial water treatment, Water Treatment Technologies
Water decarbonation, also known as degasification, is the process of removing carbon dioxide (CO2) from water. This procedure is essential in various sectors, including aquaculture, municipal water treatment, industrial processes, and the food & beverage industry. The presence of CO2 in water can lead to multiple problems, including equipment corrosion, reduced efficiency in water treatment systems, and negative impacts on aquatic life.
Topics: water treatment issues, degasification, water treatment, Decarbonation, degasifier, removal of CO2 from water, CO2 in water, decarbonation of water, DeLoach Industries, Inc., Henry's Law
In the industrial sector, water purity is not a mere operational detail—it's a critical component that can significantly impact product quality, equipment longevity, and overall operational costs. From semiconductor manufacturing to chemical production, the demand for high-quality water is a universal necessity. Many industries face the challenge of dealing with groundwater, which often contains minerals and dissolved gases like calcium carbonate, manganese, iron, and hydrogen sulfide (H2S). These contaminants can severely damage machinery, clog systems, and compromise the effectiveness of demineralization resins.
Topics: degasification, water treatment, degasifier, DeLoach Industries, Inc., Industrial water treatment, Forced Draft Degasification
Forced Draft Degasification (FDD) systems are at the forefront of industrial water purification technology and are designed to remove dissolved gases, such as carbon dioxide and hydrogen sulfide, from water, significantly improving water quality and reducing the risk of corrosion in industrial equipment. The process starts in a vertically designed tower where water flows downward, encountering a cross-current airflow. This setup allows the unwanted gases to be stripped away efficiently, ensuring that the water exiting the system is free of these contaminants.
Topics: degasification, degasifier, DeLoach Industries, Inc., Forced Draft, Industrial water treatment
Forced Draft Degasification systems are designed to remove dissolved gases, such as carbon dioxide (CO2) and hydrogen sulfide (H2S), from water, which can cause significant problems in industrial equipment. The principle behind FDD is simple but effective: water flows through a vertically structured tower, typically packed with media that maximizes the surface area. As water travels downward, a cross-current of air is forced through the system, helping to strip out unwanted gases.
This interaction between air and water allows for the efficient removal of these gases, which otherwise would contribute to the deterioration of industrial equipment through corrosion. Corrosive environments not only shorten the lifespan of machinery but also increase maintenance costs, leading to inefficiencies that can disrupt entire operations. The goal of FDD systems is to mitigate these risks, making water safe for industrial use and protecting expensive equipment investments.
These systems are widely used in industries such as power generation, chemical processing, and oil refining, where the presence of dissolved gases can lead to substantial equipment failure or process inefficiencies. The vertical design of the FDD system enables it to handle large volumes of water efficiently, making it ideal for high-capacity industrial needs. The simplicity of the FDD system, combined with its ability to consistently remove dissolved gases, makes it a preferred choice for many industrial operations that prioritize reliability and cost-effectiveness in their water treatment systems.
Topics: hydrogen sulfide (H2S), carbon dioxide, degasifier, Deagasification, DeLoach Industries, Inc., Forced Draft, Industrial water treatment
Topics: degasification, degasifier, DeLoach Industries, Inc., Forced Draft, Industrial water treatment
In modern industrial water treatment, advancements in technology and processes have revolutionized the way contaminants are removed from water.
This blog explores the integration of NSF/ANSI 61 certified systems, artificial intelligence in water treatment, and cutting-edge processes such as decarbonation and degasification. We'll also discuss the key differences between forced draft and induced draft degasification towers, helping you make informed decisions while designing your Industrial Water Treatment System.
NSF/ANSI 61-Certified Water Treatment Systems: To ensure the safety and quality of water treatment equipment, NSF/ANSI 61 certification has become a crucial standard. This certification verifies that materials and components used in water treatment systems comply with health and safety requirements. When selecting a water treatment solution, opting for NSF/ANSI 61 certified systems guarantees peace of mind and adherence to the highest industry standards.
Harnessing Artificial Intelligence in Water Treatment: Artificial intelligence (AI) has penetrated various industries, and water treatment is no exception. Integrating AI into water treatment processes allows for more efficient and optimized operations. AI-driven systems can monitor water quality in real-time, predict system failures, optimize chemical dosing, and reduce energy consumption. By leveraging AI technologies, water treatment facilities can enhance their overall performance and streamline resource utilization.
Decarbonation and Degasification Systems: Decarbonation and degasification are essential processes in industrial water treatment, particularly in pH levels in water and the ability to control removing the contaminants. These processes target the removal of carbon dioxide (CO2) and other dissolved gases from water to improve its quality. Two key systems used for this purpose are the decarbonator and aeration system.
Topics: degasification, advanced treatment solutions, biological scrubber, NSF/ANSI 61, Chemical Odor, Decarbonation, Safe drinking water, De-Aeration, decarbonator, degasifier, degassed water, ansi61, nsf/ansi61, Deagasification, decarbonation of water, DeLoach Industries, Inc., Drinking Water, Industrial Odor Control, DeLoach Industries, contaminants, process system, safe drinking water act, drinking water standards, environmental safety, air emissions, Forced Draft, Induced Draft
Degasification and decarbonation are essential processes in water treatment that play a crucial role in improving water quality.
Topics: degasification, hydrogen sulfide (H2S), Decarbonation, dissolved gases, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier, co2 dissolved in water, degassed water, decarbonation of water, DeLoach Industries, Inc., hydrogen sulfide molar mass, DeLoach Industries, carbon filters, removing hydrogen sulfide in water, hydrogen sulfide gas, dissolved oxygen
Requires an application commonly referred to as either “Degasification” or "Decarbonation" and it requires the use of a piece of water treatment equipment called either a “degasifier” or a “decarbonator”.
Both of these are similar in nature and are designed for Carbon Dioxide (CO2) removal from the incoming water. A properly designed decarbonator can remove 99.99% of the free carbon dioxide gas that is present in the water stream. One of the primary reasons for utilizing a decarbonator or degasifier for the removal of carbon dioxide gas is the raise the pH of the water without the need to add caustic. resulting in high-purity water.
The other reason is the remove the CO2 prior to treating the water with Ion Exchange which utilizes Anion or Cation resins to reduce the regeneration cycles for the resin beds. High concentrations of CO2 consume the ion charge within the resins and require more frequent regeneration cycles. The difference between anion and cation resins is that one is positively charged (anion) and the other is negatively charged (cation), cation resins, attract positive ions with their negative charge.
The term decarbonation describes the process of the removal of suspended gas or the conversion of carbonic acids into free Carbon Dioxide. Carbonic Acid (H2CO3) is stable at normal ambient anhydrous conditions. However, Carbonic Acid decomposes when not stable and in the presence of any water molecules to form carbon dioxide (CO2). The Carbonic acid breaks down when present in water and it is converted to a gas based upon certain conditions. It is common to have CO2 present in water requiring a decarbonation process when utilizing certain types of water filtration such as membrane filtration with reverse osmosis or it can be present when the need to adjust pH is required. When removing (CO2) the process is often referred to as “Decarbonation”, when removing (H2S) Hydrogen Sulfide the process is often referred to as “Degasification”.
Topics: water treatment issues, degasification, pH levels of water, aeration, iron oxidation, water treatment, water plant, bicarbonate, hydrogen sulfide (H2S), pH levels, Decarbonation, ION Exchange Resin, dissolved gases, De-Aeration, wastewater, carbon dioxide, oxygen, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier
The Basics of Water Decarbonation
and the removal of carbon dioxide (CO2). The need to remove (CO2) is essential in most Aquaculture, Municipal, Industrial, and Food & Beverage Processes To understand you must familiarize yourself with Henry’s Law.
Henry's Law defines the method and proportional relationship between the amount of a gas in a solution in relation to the gas's partial pressure in the atmosphere. Often you will see and hear various terms like degasification, decarbonation, aeration, and even air stripping when discussing the removal of dissolved gases and other convertible elements from water. Understanding the impacts that Carbon Dioxide (CO2) can have on both equipment and aquatic life provides the basic reasons why the need to decarbonate water, exists. Carbon Dioxide (CO2) can exist naturally in the raw water supply or be the result of ph control and balance. In either case, the process called Decarbonation or Degasification provides the most cost-effective and efficient manner to reduce or tally remove (CO2) from the water. In addition to Carbon Dioxide (CO2), water can contain a variety of other contaminants that may impact the removal efficiency of the Carbon Dioxide. A variety of elements as well as dissolved gases such as oxygen, nitrogen, and carbon dioxide (CO2). A full analytical review of the water chemistry is required to properly design and size the “Water Treatment” process.
Breaking the bonds in water releases a dissolved gas
such as carbon dioxide (CO2) you must change the conditions of the vapor pressure surrounding the gas and allow the gas to be removed. There are many variables to consider when designing or calculating the “means and methods” of the removal of carbon dioxide (CO2). When I refer to the means and methods. I am referring to the design of a decarbonator and its components. The means equals the size and type (Hydraulic load) of the decarbonator and the “method” equals the additional variables such as the cubic foot of airflow (CFM) and “Ratio” of the air to water to accomplish the proportional condition needed to remove the carbon dioxide (CO2).
Topics: water treatment issues, degasification, pH levels of water, aeration, iron oxidation, water treatment, water plant, bicarbonate, hydrogen sulfide (H2S), pH levels, Decarbonation, ION Exchange Resin, dissolved gases, De-Aeration, wastewater, carbon dioxide, oxygen, degasifier, gases, carbonic acid, H2S Degasifier, removal of CO2 from water