DELOACH BLOG

Degasification for Pisciculture

Posted by Anthony DeLoach on Jul 23, 2019 11:03:53 AM

To enhance and balance the water quality

Read More

Topics: De-Aeration, carbon dioxide, decarbonator, degasifier, gases, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Hydrogen Sulfide Scrubber (with audio)

Posted by Anthony DeLoach on Jun 28, 2019 2:48:10 PM
Hydrogen Sulfide Scrubber (Audio Blog)

Hydrogen sulfide gas

Read More

Topics: water treatment issues, degasification, odor control, water treatment, advanced treatment solutions, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, dissolved gases, wastewater, decarbonator, degasifier, gases, H2S Degasifier

Water Treatment Compliance with NSF/ANSI 61 Certification (with audio)

Posted by Anthony DeLoach on Jun 12, 2019 10:24:13 AM
WATER TREATMENT COMPLIANCE WITH NSFANSI 61 certification

 

The process of Decarbonation requires

the use of a vertically designed Degasification tower. A Decarbonation tower is specifically design

ed to remove Carbon Dioxide (CO2) from a water treatment process. When the water is being treated for “potable” use for direct or indirect consumption than all of the components used in the process must comply with NSF/ANSI 61 standard to assure that the components that have direct contact with the water are safe and will not introduce any foreign substance during the treatment process. Decarbonation towers have direct exposure and contact with the water during the removal of CO2 and therefore must be manufactured from material such as Fiberglass (FRP) that complies and meets the NSF/ANSI 61 standard.

Read More

Topics: water treatment, NSF/ANSI 61, Safe drinking water

The Basics of Water Decarbonation (with audio)

Posted by Anthony DeLoach on Feb 25, 2019 1:04:12 PM

 

The Basics Of Water Decarbonation

The water treatment industry continues to develop and evolve and over the past two decades there have been many new developments in technology and even more refinement in existing technologies such as "Degasification". The evolution and advancement of water treatment have been driven by the constantly increasing demand from an increase in population that demand cost-effective solutions and recognition to improve safety with the implementation of NSF 61 standards.

All human cultures on our planet share a single commonality and that is the dependency on water to survive.

Many existing technologies such as "Degasification" have evolved with higher efficiency to meet the demand changes and provide safety to consumers and to the systems. Degasification refers to the removal of dissolved gases from liquids and the science to degasify water is based upon a chemistry equation known as "Henry's Law". The "proportionality factor" is called Henry's law constant" and was developed by William Henry in the early 19th century. Henry's Law states that "the amount of dissolved gas is proportional to its partial pressure in the gas". The most "cost" effective method to perform degasification is with the packed vertical tower called a "Degasifier” or “Decarbonator”.

The key words in this previous sentence for owners, operators, and engineers to focus on is "the most cost-effective" as there is no other process more cost-effective at removing dissolved gases at the lowest cost than the use of a Degasifier or decarbonator. The process of degasification is simple enough to understand. Water is pumped to the top of a vertically constructed tower where it first enters the tower through some type of distribution system at the same time there is a cross current air flowing up from the bottom by a blower located at the bottom of the tower and the air encounters the water and is exhausted at the top of the tower through an exhaust port. There are various types of distributions systems and we will explore these in later discussions. Once the water enters the top of the tower and passes through the distribution system it then travels by gravity downward. The next thing the water encounters is some type of media packing. There are various forms of media packing offered in the degasification industry and each type can offer higher performance or have the ability to deter fouling. The selection of the type, size, and volume is where the “experience, engineering and understanding of each application” comes in to play.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, NSF/ANSI 61, hydrogen sulfide (H2S), media packing, pH levels, scaling, caustic, Decarbonation, Safe drinking water, dissolved gases, carbon dioxide, decarbonator, boiler system, degasifier, carbonic acid, H2S Degasifier

The "Clean Water Professional Award" goes to...

Posted by Anthony DeLoach on Nov 5, 2018 1:40:14 PM

On behalf of DeLoach Industries Inc., I would like to thank you for entering our drawing for the first annual "Clean Water Professional Appreciation Award".  As you know we are celebrating our 60th year serving the water and wastewater Industry.

Read More

Topics: water treatment issues, water quality, degasification, odor control, water treatment, biological scrubber, water plant, Chemical Odor, Decarbonation, wastewater

Forced Draft Degasification Pre and Post Cation And Anion Exchange

Posted by Anthony DeLoach on Oct 23, 2018 7:49:53 AM

In the production and purification of water for industry there are many types of different processes available to remove harmful minerals and gases from the water stream but the most effective process and most cost effective from both a capital investment and operational cost is a “Forced Draft Degasification System” (Degasifier).

Degasification is used in a wide range of water processes

for industrial and municipal applications which extend from the production of chemicals to the production of semiconductors and in all applications the need to remove contaminants from the water and dissolved gases is key to achieving the end results needed in the industrial water process. Water from the ground often contains elements such as calcium carbonate, manganese, iron, salts, hydrogen sulfide, and sulfur just to name a few of the basic contaminants and these naturally occurring elements can cause serious damage and consequences to process equipment such as boiler systems, piping, membranes, and cation and anion exchange resins used in the demineralization process.

Calcium carbonate can dissolve in water under certain pH ranges forming carbonic acid and releasing carbon dioxide (CO2) gases. These gases are not only very corrosive to equipment like boiler feed systems and boiler tubes but also attack the actual resin beds found in cation and anion softening and demineralization system causing an increase in regeneration and chemical consumption and resin bed replacement.

By incorporating a Force Draft Degasification system you can remove dissolved gasses

like CO2 and hydrogen sulfide (H2S) to as low as 99.999% and improve the cation and anion system performance, extend the resin bed life, and lower the operating cost of the water treatment process.

Quite often Forced Draft Degasification is utilized “post” treatment to also remove newly formed dissolved gases prior to entering the boiler feed system to prevent corrosion damage within the tubes and feed system and pumps. These gases are easily removed with the forced draft degasifier at a much lower cost than chemical additives or liquid cell degasification that requires higher capital cost and much higher operating cost.

Read More

Topics: water treatment issues, degasification, pH levels of water, iron oxidation, water treatment, water distribution system, aluminum, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Langilier index (LSI), Decarbonation, ION Exchange Resin, dissolved gases, feed water, De-Aeration, wastewater, carbon dioxide, decarbonator, degasifier, carbonic acid, H2S Degasifier

Aqua Farming

Posted by Anthony DeLoach on Sep 11, 2018 9:09:00 AM

To enhance and control production and quality

of seafood that is grown and harvested the industry is increasing its focus on the construction of in house aquaculture fish farms commonly referred to as aqua farming. The most popular species of aqua farming continues to be salmon, tilapia, catfish, and carp. With the increase interest in the United States aqua farming facilities have been developing in parts of southern Florida where climate conditions and water conditions are favorable.

When considering several types of fish species to grow for harvest it is important to keep in mind the need to control the quality of the water. If the aqua farm is intended to utilize man made tanks they will depend upon a constant flow of incoming water. If the aqua farm is focusing on salmon then both the water quality and water temperature plays a major role on mortality rates and production yields of the operation.

Having water with too high of hydrogen sulfide, carbon dioxide, total Organic carbons, and even turbidity can increase mortality rates among the younger fish species and is especially critical to salmon.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, hydrogen sulfide (H2S), pH levels, Alkalinity, Decarbonation, carbon dioxide, oxygen, decarbonator, degasifier, carbonic acid, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Aquaculture

Posted by Anthony DeLoach on Sep 6, 2018 10:11:28 AM

Water Treatment

When planning and designing a man made on land aquaculture or pisciculture facility the most important key element is the quality of the water. For operations developing in Florida or the Caribbean it is important to remember that water quality varies in Florida and other states in the US and typically requires some type of water treatment. For fresh and salt water land based farms that utilize tanks located inside of a building the water needs to be treated and pure from any naturally occurring contaminants such as hydrogen sulfide (H2S), iron (Fe+), and even carbon dioxide (CO2).

The most cost effective way to treat incoming water for aquaculture farming and remove hydrogen sulfide, iron, and lower carbon dioxide is the use of a “degasification” tower. A degasification tower or degasifier is a piece of process equipment. Degasifiers can also be referred to as a “decarbonator” or “air stripper” or even “aeration tower”. The degasification tower is a vertical column designed to remove certain types of contaminants by “stripping” the molecules of converted gases and expelling them from the water as a gas. The science is based upon “Henry’s Law” and it relies upon the disproportionate varying vapor pressures of gases.

If the incoming raw water contains levels of sulfides or hydrogen sulfide gases it is recommended to remove the hydrogen sulfide to improve the water quality and reduce the risk of the development and formation of bacteria that can thrive on the Sulfur. In addition hydrogen sulfide is corrosive and will cause harm to other components within the process if left untreated. It is important to adjust the pH of the raw feed water prior to degasification to ensure full conversion of the sulfides into hydrogen sulfide gas (H2S) to enable the degasification process to perform and remove up to 99.99% of the harmful contaminants without adding additional chemicals. This saves money and improves quality of the product!

Read More

Topics: water quality, degasification, pH levels of water, water treatment, hydrogen sulfide (H2S), pH levels, Alkalinity, Decarbonation, Caribbean, carbon dioxide, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Sour Gas Degasification

Posted by Anthony DeLoach on Aug 28, 2018 12:31:07 PM

The Term Sour Gas

refers to any natural gas or other gas that contains high levels of hydrogen sulfide (H2S). The H2S is typically naturally occurring and found in deposits of natural gas and when there are concentrations above 5.7 milligrams per cubic meter or 4 milligrams per cubic meter when tested under standard temperature and pressure. At these levels the industry classifies the gas as “Sour.” Of course there are variations to this classification dependent upon agency an organization.

A Sour gas is not to be confused with an acidic gas 

although one could be both a sour gas is strictly defined by having large quantities of hydrogen sulfide and is usually accompanied by having mercaptans which adds to the foul smell and odor. The term is often used in the oil refinery business and when gases contain sour gas the process to remove the hydrogen sulfide and mercaptans is referred to as “Sweetening”. The most common method to “sweeten” and remove the sour gas is by processing the gas through an “amine process” which removes the harmful gas.

Read More

Topics: odor control, aeration, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, pH levels, Decarbonation, dissolved gases, wastewater, carbon dioxide, degasifier, gases, Amine, H2S Degasifier

Reverse Osmosis-A walk in time

Posted by Anthony DeLoach on Aug 21, 2018 8:53:00 AM

DeLoach Industries made history in 1977 at the City of Cape Coral Florida water treatment plant with its large scale “degasification towers” connected to what was to become the first municipal water treatment facility in the United States to deploy the use of reverse osmosis on a large-scale production municipal treatment plant.

The Cape Coral water treatment plant for came on line in 1977 and produced 3 million gallons of water per day (GPD) or 11.35 liters of purified and treated water utilizing the “reverse osmosis” process. By 1985 the plant had expanded as it kept up with growth to produce 15 million gallons per day making it at the time the worlds’ largest “reverse osmosis” water treatment plant facility.

Read More

Topics: water quality, pH levels of water, water treatment, advanced treatment solutions, water plant, hydrogen sulfide (H2S), pH levels, Alkalinity, scaling, chlorine, caustic, Decarbonation, wastewater, carbon dioxide, degasifier, RO membrane, RO system, H2S Degasifier

Subscribe to our blog

Recent Posts