Decarbonation the Removal of CO2 from Water

Posted by Anthony DeLoach, President on Aug 16, 2021 2:08:54 PM

The basics of water decarbonation, the removal of CO2 from water

the removal of carbon dioxide (CO2). The need to remove (CO2) is essential in most Aquaculture, Municipal, Industrial, and Food & Beverage Processes To understand you must familiarize yourself with Henry’s Law.

Henry's Law defines the method and proportional relationship between the amount of a gas in solution

in relationship to the gases partial pressure in the atmosphere. Often you will see and hear various terms like degasification, decarbonation, aeration, and even air stripping when discussing the removal of dissolved gases and other convertible elements from water. Understanding the impacts that Carbon Dioxide (CO2) can have on both equipment and aquatic life provides the basic reasons why the need to decarbonate water, exists. Carbon Dioxide (CO2) can exist naturally in the raw water supply or be the results of ph control and balance. In either case the the process called Decarbonation or Degasification provide the most cost effective and efficient manner to reduce or tally remove (CO2) from the water. In addition to Carbon Dioxide (CO2), water can contain a variety of other contaminants that may impact the removal efficiency of the Carbon Dioxide. A variety of elements as well as dissolved gases such as oxygen, nitrogen and carbon dioxide (CO2). A full analytical review of the water chemistry is required to properly design and size the “Water Treatment” process.

Breaking the bonds in water to release a dissolved gas

such as carbon dioxide (CO2) you must change the conditions of the vapor pressure surrounding the gas and allow the gas to be removed.  There are many variables to consider when designing or calculating the “means and methods” of the removal of carbon dioxide (CO2). When I refer to the means and methods. I am referring to the design of a decarbonator and its components. The means equals the size and type (Hydraulic load) of the decarbonator and the “method” equals the additional variables such as cubic foot of air flow (CFM) and “Ratio” of the air to water to accomplish the proportional condition needed to remove the carbon dioxide (CO2).

Read More

Topics: water treatment issues, degasification, pH levels of water, aeration, iron oxidation, water treatment, water plant, bicarbonate, hydrogen sulfide (H2S), pH levels, Decarbonation, ION Exchange Resin, dissolved gases, De-Aeration, wastewater, carbon dioxide, oxygen, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier, removal of CO2 from water

Subscribe to our blog

Recent Posts