I will explore the potential risks of exposure to two members of a family of man-made chemicals called PFAS. These chemicals are PFOA and PFOS.
I will discuss the sources of PFOA and PFOS. These include leaching from industrial sites, the use of consumer products, and food and water contamination.
I will also discuss the exposure pathways of PFOA and PFOS. I will examine the regulations and guidelines for the use of these chemicals. I will also investigate their impact on the environment and various industries.
I will guide how to limit exposure to PFOA and PFOS and protect oneself from potential health risks. Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) have been primary environmental safety concerns raised recently. There may be short and long-term health impacts on humans.
This guide covers the potential risks of PFOA and PFOS. It explains their sources and exposure pathways. It also looks at regulations and guidelines for their usage and impact on the environment and industries.
Introduction to PFOA and PFOS
PFOA and PFOS are fluorinated organic compounds used in various industrial and consumer applications for decades. PFOA is a synthetic chemical that produces non-stick coatings, stain-resistant fabrics, and water-resistant clothing. PFOS is another synthetic chemical used in firefighting foams, stain-resistant coatings, and cleaning products.
Read More
Topics:
water treatment issues,
water quality,
water treatment,
advanced treatment solutions,
FDA,
Safe drinking water,
wastewater,
Global,
RO system,
DeLoach Industries, Inc.,
Drinking Water,
PFA's,
DeLoach Industries,
Cosmetics,
make-up,
water process system,
removing PFAS & PFOS,
pfas exposure,
health effects of pfas,
nonstick cookware,
wastewater treatment system,
water treatment standards,
PFOS,
safe drinking water act,
pfoa regulations,
the environmental protection agency,
drinking water standards,
adverse health effects,
water resistant clothing,
environmental safety
PFAS, or 'the forever chemicals, due to their long-lasting nature, are present in nonstick cookware, food packaging, and stain repellents and can cause health issues. Knowing the sources, making conscious decisions about products, limiting processed and packaged foods, and opting for safer alternatives is essential. You can protect yourself and your family from potential harm through these steps.
What is PFAS?
PFAS are a class of chemical substances used in various commercial and industrial applications, including nonstick cookware, stain repellents, and food packaging.
There are two main types of PFAS:
- Traditional PFAS
- Next-generation PFAS (also known as 'long-chain' PFAS).
Traditional PFAS include perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), which have been phased out in the United States due to health concerns.
Next-generation PFAS such as perfluorohexane sulfonic acid (PFHxS), perfluoroheptanoic acid (PFHpA), and perfluorononanoic acid (PFNA) have also been identified as contaminants in drinking water and other consumer products. Unfortunately, next-generation PFAS are not regulated by the United States Environmental Protection Agency (EPA).
Health effects of PFAS
PFAS exposure at low levels can cause a few health risks and medical conditions, such as weakened immunity, thyroid issues, and cancer. Research is ongoing to see if it can impact fetus/baby growth and development, but these results are not definitive. Pregnant women can pass on PFAS to their fetuses, which could hurt the infant's health. Also, children exposed to PFAS in their young years may be at a higher risk for getting ADHD in the future.
Read More
Topics:
water quality,
advanced treatment solutions,
Safe drinking water,
Global,
distillation,
DeLoach Industries, Inc.,
Drinking Water,
Clean Water,
Contaminated Water,
PFA's,
Water Test,
Water Test Kit,
DeLoach Industries,
make-up,
removing PFAS & PFOS,
pfas exposure,
health effects of pfas,
exposure to pfas,
nonstick cookware,
food packaging
If you’ve been reading the news lately, you know nanoparticles are not so great. In everything from cosmetics to water filters, nanoparticles have been shown to cause various health problems. But what exactly are nanoparticles, and how can you protect yourself from their harmful effects? Let’s answer these questions and more with this quick guide on removing nanoparticles from your drinking water.
What are Nanoparticles?
Nano is a prefix that’s used to indicate how small something is. In the case of nanoparticles, it means particles less than 100 nanometers. Water filters that use nanoparticles are generally around 0.2 to 0.3 microns or 2,000 to 3,000 nanometers. That’s pretty small. There are some health concerns with nanoparticles. When ingested, they can cause inflammatory reactions in the body, disrupt normal organ function, and lead to a buildup of fluids in the lungs or other organs. A 2017 study found that the number of nanoparticles in drinking water is higher than expected and that using carbon filtration may make some nanoparticles more likely to leach into the water.
Where Are Nanoparticles Found?
Nanoparticles are found in a lot of modern products. Their small size makes them ideal for air and water filters, sunscreens, and cosmetics. It’s important to note that not all nanoparticles are harmful. Some are beneficial. Nanoparticles of silver are often added to water filters to help remove bacteria and other contaminants from drinking water. There are a few places where nanoparticles are most often found. - In water filters - Nanoparticles are often added to water filters to help remove bacteria and harmful contaminants. - In sunscreens - Some sunscreen products contain nanoparticles of zinc oxide, titanium dioxide, and other minerals that provide broad UV protection. - In cosmetics - Many makeups, lip balms, and other beauty products contain nanoparticles of iron, titanium dioxide, zinc oxide, and other minerals that help preserve the product and provide color.
Read More
Topics:
water treatment issues,
water quality,
water treatment,
advanced treatment solutions,
About DeLoach Industries,
water plant,
safety,
Safe drinking water,
Global,
distillation,
RO membrane,
RO system,
particulate matter,
filters,
municipal water systems,
residential well water systems,
DeLoach Industries, Inc.,
Drinking Water,
Clean Water,
Water Test,
Water Test Kit,
DeLoach Industries,
technology,
minerals,
temperature,
nanoparticles,
Cosmetics,
Nano,
make-up,
organ function,
contaminants,
pressure filters,
reverse osmosis,
carbon filters,
UV filters,
activated carbon
3D printing is a technology that has only recently become commercially available.
Progress in the last decade has allowed the equipment to excel tremendously.
3D print technology was started in 1987 by 3D Systems Corporation. The technology gained traction in the early 2010s. 3D printing is a type of additive manufacturing that creates three-dimensional parts. By successively adding material layer by layer until the part is complete.
To create the part, a 3D CAD model is required. The potential of 3D printing has led to a wide variety of technologies on the market. This blog will go into depth on the most prevalent types of 3D printing and their applications.
Figure: Direct side-by-side comparison of the three polymer 3D print technologies discussed in this blog.
Read More
Topics:
water treatment,
DeLoach Industries, Inc.,
3D CAD,
software,
3D,
DeLoach Industries,
3D parametric,
dimensions,
technology,
2D CAD,
parametric,
nylon,
abrasion,
printer,
sls,
Polymer,
geometries,
printing,
prototyping,
interlocking,
3D technology,
interior,
Polylactic Acid,
Acrylonitrile Butadiene Styrene,
Isotropic
A manufacturing facility cannot ignore the importance of odor control.
The smell of chemicals, vapors, and fumes can spread quickly in a small area. They cause discomfort to workers and pose health risks to them. In addition, excess vapors directly impact the efficiency of exhaust or natural ventilation systems. For example, an odor control scrubber tower is an additional layer in the ventilation system of a manufacturing plant or chemical processing facility with odor issues. These towers effectively remove noxious fumes and odors from ventilation exhaust streams using an activated carbon filter and an ionic air filter.
Reasons why you should consider installing an Odor Control Scrubber Tower :
Health & safety of workers.
Anyone working in an industrial environment, directly or indirectly, is at risk of exposure to hazardous fumes and gases. At times, high concentrations of these gases may be emitted into the atmosphere in the form of unhealthy odors, putting the health and safety of the workers at risk. These gases may even be combustible in some cases, posing a significant threat to workers. The purpose of an odor control scrubber tower is to remove these gases from the contaminated air stream and help the workers stay safe. In addition, it reduces the risk of health issues such as nausea, headaches, loss of consciousness, allergy symptoms, dizziness, and many more. It also prevents workers from missing their daily performance targets due to sickness caused by toxic fumes.
Pro-environment step.
Although it is vital to protect workers from exposure to harmful fumes, it is also essential to protect the environment. Odor control scrubbers are used in petrochemical refining, pharmaceutical, food & beverage, paper, mining, chemical, and pharmaceutical industries. Therefore, choosing the right scrubber type that suits your industry’s requirements is crucial. The right choice of equipment also protects the environment as it helps reduce operational costs and maintenance supervision. It also protects the environment because it produces minimal sludge and reduces the risk of corrosion.
Read More
Topics:
water treatment issues,
water quality,
odor control,
water treatment,
water distribution system,
advanced treatment solutions,
biological scrubber,
water plant,
safety,
odor control scrubber,
hydrogen sulfide (H2S),
Chemical Odor,
caustic,
Safe drinking water,
wastewater,
gases,
Biological Odor Control Scrubber,
Biological odor control,
what is a scrubber,
municipal water systems,
DeLoach Industries, Inc.,
Clean Water,
Industrial Odor Control
If you’ve been following the news, you know a growing problem with PFAS (per and poly-fluoroalkyl substances).
These man-made chemicals are found in everything from clothing to food packaging. While they are inexpensive and stable in products, some tend to break down into other substances, such as PFAS-methyl tetrahydrofuran. PFASs have been discovered in drinking water nationwide, including in parts of the country with very high water tables. As a result, it’s essential to learn how to remove contaminants from your drinking water. What should you do if you suspect that there’s a problem with your water? Check the source of the water, test it, and treat it if necessary.
Follow these steps to remove contaminants from your drinking water.
Test Your Water
Although it’s essential to know how to remove contaminants in general, it’s even more important to know how to test your water for contamination. A water test kit can help you determine whether there are contaminants in your water and whether they are at a dangerous level. You can purchase water test kits at grocery stores, hardware stores, and online retailers. Generally, these kits come with the standard set of tests for a home water filtration system, but they also often include tests for specific contaminants. Use these tests to determine whether your water is safe to drink. If your water contains contaminants, you need to remove them from your water source. This can be done by digging a more bottomless well, installing a water filtration system, or getting a water purification system. If your water does not contain contaminants, you don’t need to do anything except continue drinking your water.
Read More
Topics:
water treatment issues,
water quality,
odor control,
water treatment,
advanced treatment solutions,
Chemical Odor,
Safe drinking water,
RO system,
filters,
Filter Media,
residential well water systems,
DeLoach Industries, Inc.,
backwash,
Carbon Filter,
Micron Filter,
Drinking Water,
Clean Water,
Contaminated Water,
Water Source,
Sediment Filter,
PFA's,
Water Test,
Water Test Kit
Water turbidity refers to how transparent or translucent the water is when examining or testing it for any use.
Water turbidity can impact food and beverage, municipal, industrial, and aquaculture operations. Turbidity is caused by suspended or dissolved particles in the water that scatter light which causes the water to appear cloudy or even murky.
Different particles can cause turbidity, including sediments such as silts and clay, fine inorganic or organic matter, algae or soluble colored organic compounds, and microscopic organisms. Turbidity is measured in a value referred to as NTU, which means Nephelometric Turbidity Unit. The EPA requires a turbidity level no higher than 0.3 NTU in the USA, and if a member of the partnership of safe drinking water, then the level must not exceed 0.1 NTU.
High turbidity can create habitats for other harmful elements, such as bacteria or metals, that can accumulate onto the particles. This increases the health risk for a potable water system. In aquaculture operations, increased turbidity from silts and sediments can harm and harm marine life, so it must be removed to safe levels. For the food and beverage industry, the impact of high turbidity can be both a safety concern and a visual and noticeable quality concern because if the turbidity is high, it can alter the physical look of the final product, for example, a distillery.
Read More
Topics:
water treatment issues,
water quality,
degasification,
pH levels of water,
water treatment,
water distribution system,
advanced treatment solutions,
water plant,
Safe drinking water,
De-Aeration,
decarbonator,
Aqua Farming,
Fish Farming,
Aquaculture,
Pisciculture,
Deagasification,
particulate matter,
filters,
Sand filters,
municipal water systems,
industrial facilities,
DeLoach Industries, Inc.,
turbidity
The EPA and other world health organizations have recognized the dangers and health impacts of being exposed to PFASs.
Federal and State regulators are adopting new guidelines and laws for treating and removing PFASs. Often PFASs within potable drinking water systems or groundwater is contaminated with one of the various types of PFASs. There are over 4700 different variations of PFASs that have variations and at least three polyfluorinated carbon atoms.
Well over 10,000 types of PFASs are introduced into products. That can and has impacted the drinking water quality in the USA and other countries.
So what are PFASs?
PFASs are fluorinated substances that include at least one fully fluorinated methyl or methylene carbon atom. They do not contain (H/Cl/Br/I atoms). However, any chemical with at least a perfluorinated (CF3) or a perfluorinated (CF2) is a PFAS. There are a few exceptions.
Different subgroups include surfactants, per fluorosulfonic acids, perfluorooctane sulfonic, perfluoro carboxylic, and perfluorooctanoic acids. Often referred to as PFOSs and PFOAs.
PFOS, PFOA, and other PFASs are persistent organic pollutants. They are often referred to as the "forever chemicals" because they do not easily break down in the environment. These organic contaminants are found in humans, animals, and our water supplies across the USA.
Read More
Topics:
degasification,
NSF/ANSI 61,
Decarbonation,
Safe drinking water,
ansi61,
Co2 ph,
CO2 in water,
Deagasification,
hydrogen ion,
DeLoach Industries, Inc.
In water treatment, it is often required to remove small particulate matter from the raw water. One of the most cost-effective ways to accomplish this is with a pressure filter. Sometimes referred to as “sand filters,” a pressure filter consists of a rigid filter vessel capable of withstanding internal pressure, combined with pipework to distribute and collect water and one or multiple types of filter media. Pressure filters are commonly used in municipal water systems, industrial facilities, residential well water systems, and swimming pools. Typical pressure filter construction is shown below:
At the top of the filter vessel, a distributor is used to break up and distribute the water flow so that there are no concentrated flow jets that stir up the media bed. Inflow distributors are usually oriented to direct flow at the top of the vessel to disperse the flow further. Below the distributor is the primary filter bed. The filter bed contains fine-grained media, most often sand, including crushed anthracite coal, activated charcoal, garnet, or other granular bulk products. The media bed is the thickest layer in the filter vessel and is the region that does the actual filtering of the water or other fluid. Below the media bed will be one or more support layers. These will usually be larger-sized gravel that is chosen to support the filter bed while allowing high flow through the support layer and into the outflow header. The outflow header can take several forms but is often composed of a large central pipe with multiple smaller pipes or “laterals” attached. The laterals are slotted or perforated. This allows the pressurized water to flow into the laterals and out through the outflow header into the downstream components of the water treatment system.
Read More
Topics:
particulate matter,
filters,
Pressure filter,
Sand filters,
Filter Media,
municipal water systems,
industrial facilities,
residential well water systems,
greensand,
DeLoach Industries, Inc.,
backwash,
automated control systems,
actuated valves,
pump controls
In water treatment systems it is often important to measure the rate at which water is flowing through the system. Data from flow measurement devices can be used to control chemical dosing, set pump speeds, control filter loading rates, inform maintenance programs, and other tasks necessary for operation of a water treatment facility or on key components such as Degasification and Decarbonation systems or Biological Odor Control Systems. As with most types of instrumentation, there is an array of technologies that can be used for the task, each one with various strengths and optimal applications. For modern electronically controlled systems, the most common types of flow sensors used are axial turbine flowmeters, paddlewheel flowmeters, differential pressure / orifice plate flow transducers, and magnetic flowmeters. This article will briefly discuss the technology and features of each of these types.
A turbine flow meter,
consists of a tube that contains supports to hold a multi-bladed metal turbine in the center. The turbine is designed to have close clearance to the walls of the tubing such that nearly all of the water is made to flow through the turbine blades as it travels through the pipe. The turbine is supported on finely finished bearings so that the turbine will spin freely even under very low flows. As the turbine spins, a magnetic pickup located outside of the flowmeter housing is used to sense the tips of the turbine blade spinning past the pickup. An amplifier/transmitter is then used to amplify the pulses and either transmit them directly or convert the pulse frequency into an analog signal that is then sent to a programmable controller for further use elsewhere in the system. One advantage of a turbine flowmeter is that the electronics are separated from the fluid path. The magnetic pickup is the only electronic component, and it is installed outside of the turbine housing, reading the presence of the turbine blade tips through the wall of the sensor body. In clean water applications, this can be advantageous because the magnetic pickup can be replaced if needed without removing the turbine from service. However, the turbine itself covers most of the pipe area and creates back-pressure in the system, requiring increased pumping energy to move a given amount of water. In Industrial Water Treatment or Filtration Treatment, turbines can also easily become fouled or jammed if they are used to measure water or other fluids with entrained solids, algae or bacteria cultures which cause significant accumulation, or corrosive chemical components that can degrade the turbine bearings.
Read More
Topics:
water quality,
water treatment,
advanced treatment solutions,
About DeLoach Industries,
water plant,
pumps,
Alkalinity,
Safe drinking water,
wastewater,
Recycling,
pharmaceutical water,
Aqua Farming,
Aquaculture,
Pipe Size,
municipal water systems,
industrial facilities,
DeLoach Industries, Inc.,
actuated valves,
pump controls,
Drinking Water,
Clean Water,
Water Test,
Water Test Kit,
DeLoach Industries,
civil engineers