DELOACH BLOG

Anthony DeLoach, President

Recent Posts

How to Remove Nanoparticles from Your Drinking Water‍

Posted by Anthony DeLoach, President on Jul 22, 2022 1:14:33 PM

If you’ve been reading the news lately, you know nanoparticles are not so great. In everything from cosmetics to water filters, nanoparticles have been shown to cause various health problems. But what exactly are nanoparticles, and how can you protect yourself from their harmful effects? Let’s answer these questions and more with this quick guide on removing nanoparticles from your drinking water.

What are Nanoparticles?

Nano is a prefix that’s used to indicate how small something is. In the case of nanoparticles, it means particles less than 100 nanometers. Water filters that use nanoparticles are generally around 0.2 to 0.3 microns or 2,000 to 3,000 nanometers. That’s pretty small. There are some health concerns with nanoparticles. When ingested, they can cause inflammatory reactions in the body, disrupt normal organ function, and lead to a buildup of fluids in the lungs or other organs. A 2017 study found that the number of nanoparticles in drinking water is higher than expected and that using carbon filtration may make some nanoparticles more likely to leach into the water.

Where Are Nanoparticles Found?

Nanoparticles are found in a lot of modern products. Their small size makes them ideal for air and water filters, sunscreens, and cosmetics. It’s important to note that not all nanoparticles are harmful. Some are beneficial. Nanoparticles of silver are often added to water filters to help remove bacteria and other contaminants from drinking water. There are a few places where nanoparticles are most often found. - In water filters - Nanoparticles are often added to water filters to help remove bacteria and harmful contaminants. - In sunscreens - Some sunscreen products contain nanoparticles of zinc oxide, titanium dioxide, and other minerals that provide broad UV protection. - In cosmetics - Many makeups, lip balms, and other beauty products contain nanoparticles of iron, titanium dioxide, zinc oxide, and other minerals that help preserve the product and provide color.

Read More

Topics: water treatment issues, water quality, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, safety, Safe drinking water, Global, distillation, RO membrane, RO system, particulate matter, filters, municipal water systems, residential well water systems, DeLoach Industries, Inc., Drinking Water, Clean Water, Water Test, Water Test Kit, DeLoach Industries, technology, minerals, temperature, nanoparticles, Cosmetics, Nano, make-up, organ function, contaminants, pressure filters, reverse osmosis, carbon filters, UV filters, activated carbon

Treating Noxious Fumes with an Odor Control Scrubber.

Posted by Anthony DeLoach, President on May 24, 2022 1:00:00 PM

A manufacturing facility cannot ignore the importance of odor control.

 

The smell from chemicals, vapors, and fumes can spread quickly in a small area. They cause discomfort to workers and pose health risks to them. In addition to that, excess vapors directly impact the efficiency of exhaust or natural ventilation systems. For example, an odor control scrubber tower is an additional layer in the ventilation system of a manufacturing plant or chemical processing facility that has issues with odors. These towers effectively remove noxious fumes and odors from ventilation exhaust streams using an activated carbon filter and an ionic air filter.

 

Reasons why you should consider installing an Odor Control Scrubber Tower :

 

Health & safety of workers.

 

Everyone working in an industrial environment, either directly or indirectly, is at risk of exposure to hazardous fumes and gases. At times, high concentrations of these gases may be emitted into the atmosphere in the form of unhealthy odors, putting the health and safety of the workers at risk. These gases may even be combustible in some cases, posing a significant threat to workers. The purpose of an odor control scrubber tower is to remove these gases from the contaminated air stream and help the workers stay safe. In addition, it reduces the risk of health issues such as nausea, headaches, loss of consciousness, allergy symptoms, dizziness, and many more. It also prevents workers from missing their daily performance targets due to sickness caused by toxic fumes.

 

Pro-environment step.

 

Although it is vital to protect the workers from exposure to harmful fumes, it is also essential to protect the environment. Odor control scrubbers are used in petrochemical refining, pharmaceutical, food & beverage, paper, mining, chemical, and pharmaceutical industries. Therefore, it is crucial to choose the right type of scrubber that suits your industry’s requirements. The right choice of equipment also protects the environment as it helps reduce operational costs and maintenance supervision. It also protects the environment because it produces minimal sludge and reduces the risk of corrosion.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, water distribution system, advanced treatment solutions, biological scrubber, water plant, safety, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, caustic, Safe drinking water, wastewater, gases, Biological Odor Control Scrubber, Biological odor control, what is a scrubber, municipal water systems, DeLoach Industries, Inc., Clean Water, Industrial Odor Control

PFAS in Drinking Water

Posted by Anthony DeLoach, President on May 4, 2022 1:05:00 PM

If you’ve been following the news, you know that there’s a growing problem with PFAS (per- and polyfluoroalkyl substances).

 

These man-made chemicals are found in everything from clothing to food packaging. While they are inexpensive and stable in products, some of these substances tend to break down into other substances, such as PFAS-methyl tetrahydrofuran. PFASs have been discovered in drinking water across the country, including in parts of the country with very high water tables. As a result, it’s important to learn how to remove contaminants from your drinking water. What should you do if you suspect that there’s a problem with your water? Check the source of the water, test it, and treat it if necessary.

Follow these steps to remove contaminants from your drinking water.

Test Your Water

Although it’s important to know how to remove contaminants in general, it’s even more important to know how to test your water for contamination. A water test kit can help you determine whether there are contaminants in your water and whether they are at a dangerous level. You can purchase water test kits at most grocery stores, hardware stores, and online retailers. Generally, these kits come with the standard set of tests for a home water filtration system, but they also often include tests for certain contaminants. Use these tests to determine whether your water is safe to drink or not. If your water contains contaminants, you need to remove them from your water source. This can be done by digging a deeper well, installing a water filtration system, or getting a water purification system. If your water does not contain contaminants, you don’t need to do anything except continue drinking your water.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, Chemical Odor, Safe drinking water, RO system, filters, Filter Media, residential well water systems, DeLoach Industries, Inc., backwash, Carbon Filter, Micron Filter, Drinking Water, Clean Water, Contaminated Water, Water Source, Sediment Filter, PFA's, Water Test, Water Test Kit

What Is Water Turbidity?

Posted by Anthony DeLoach, President on Mar 18, 2022 1:05:00 PM

Water turbidity refers to how clear or translucent the water is when examining or testing it for any given use.

Water turbidity can impact food and beverage, municipal, industrial, and aquaculture operations. Turbidity is caused by suspended or dissolved particles in the water that scatter light which causes the water to appear cloudy or even murky.

Different types of particles can cause turbidity and they include sediments such as silts and clay, very fine inorganic or organic matter, algae or soluble colored organic compounds, and microscopic organisms. Turbidity is measured in a value referred to as NTU, which means Nephelometric Turbidity Unit. The EPA requires in the USA a turbidity level no higher than 0.3 NTU, and if a member of the partnership of safe drinking water, then the level must not exceed 0.1 NTU.

High turbidity can create habitats for other harmful elements such as bacteria or metals that can accumulate onto the particles. This increases the health risk for a potable water system. In aquaculture operations, increased turbidity from silts and sediments can be harmful and detrimental to marine life, so it must be removed to safe levels. For the food and beverage industry, the impact of high turbidity can be both a safety concern as well as a visual and noticeable quality concern because if the turbidity is high, it can alter the physical look of the final product, for example, a distillery.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, water distribution system, advanced treatment solutions, water plant, Safe drinking water, De-Aeration, decarbonator, Aqua Farming, Fish Farming, Aquaculture, Pisciculture, Deagasification, particulate matter, filters, Sand filters, municipal water systems, industrial facilities, DeLoach Industries, Inc., turbidity

How to Remove PFA'S from Water

Posted by Anthony DeLoach, President on Feb 22, 2022 1:02:58 PM

The EPA and other world health organizations have recognized the dangers and health impacts of being exposed to PFASs.

 

Federal and State regulators are adopting new guidelines and laws for treating and removing PFASs. Often PFASs within potable drinking water systems or groundwater is contaminated with one of the various types of PFASs. There are over 4700 different variations of PFASs that have variations and at least three polyfluorinated carbon atoms.

 

Well over 10,000 types of PFASs are introduced into products that can and have impacted the drinking water in the USA and other countries. 

 

So what are PFASs?

 

PFASs are fluorinated substances that include at least one fully fluorinated methyl or methylene carbon atom and do not contain ( H/Cl/Br/I atoms). However, any chemical with at least a perfluorinated (CF3) or a perfluorinated (–CF2–) is a PFAS. There are a few exceptions. Different subgroups include surfactants, per fluorosulfonic acids, perfluorooctane sulfonic, perfluoro carboxylic, and perfluorooctanoic acids. Often referred to as PFOSs and PFOAs.

 

 

PFOS, PFOA, and other PFASs are persistent organic pollutants and are often referred to as the "forever chemicals" because they do not easily break down in the environment. These organic contaminants are found in humans, animals, and our water supplies across the USA. These chemicals started to be banned in 2021 when Maine took the lead as the first US state to implement the ban and discontinue their use by 2030 in all products unless there is no other current option than an exception may be granted.

Read More

Topics: degasification, pH levels of water, aeration, water treatment, advanced treatment solutions, water plant, NSF/ANSI 61, hydrogen sulfide (H2S), Decarbonation, ION Exchange Resin, Safe drinking water, decarbonator, degasifier, H2S Degasifier, degassed water, ansi61, Co2 ph, removal of CO2 from water, CO2 in water, Deagasification, hydrogen ion, Sand filters, green sand, greensand, DeLoach Industries, Inc., Ion exchange, cations, anions

What is Water Demineralization?

Posted by Anthony DeLoach, President on Jan 27, 2022 12:54:16 PM

Water demineralization is also referred to as deionization and as a process known as “Ion Exchange”.

In simple terms, water demineralization is “Water Purification”. The process involves removing dissolved ionic mineral solids from a feed-water process typically for “Industrial” water applications but can also be utilized to remove dissolved solids from a water process for “Aquaculture”, “Food and Beverage” and the “Municipal” markets.

Why is demineralization utilized? Well, it can remove dissolved solids down to near distilled water quality at a much lower capital and operational cost than other treatment processes such as membrane softening (Reverse Osmosis). Demineralization applies the science known as “Ion Exchange” which attracts negative and positive charged ions and allows either to attach themselves to an opposing ion depending on their respective current negative or positive charge during what is known as a resin cycle. We will explore and go into more specific details on the science of the ion exchange process in other technical articles. Water that has dissolved salts and minerals has ions and these ions are either negatively charged ions known as “Anions” or positively charged ions known as “Cations”. In order to treat the water and remove these contaminants the ions in the water are attracted to counter-ions which are ions that have an opposing charge. In a demineralization treatment process, there are pressure vessels that hold resin beads which are typically made of plastic. The beads are made from a plastic material that has an ionic functional group that allows them to hold and maintain an electrostatic electrical charge. Some of these resin groups are negatively charged and they are referred to as “Anion” resins while others hold a positive charge and are called “Cations” resins.

There are different applications to apply Ion exchange technologies and that is why you will often hear the different terminology interchanged like deionization and demineralization. The raw water quality and the specific application will dictate the type of ion exchange process that will be needed. As an example, if the water contains a high level of hardness the water will most likely contain Ca2+ or Mg2+ dissolved solids possessing a positive charge. To replace these hard ions it is typical to utilize a resin bed with a salt ion like Na+. As the water passes over the resin bead material within the pressure vessel the hard ions are replaced with the salt ion and therefore all of the hardness within the water is removed. However, the water will now contain a higher concentration of sodium ions and this must be considered during the evaluation and selection process of the type of resin material to utilize for the specific application. If the water application requires high purity and the removal of as many solids as possible then the term or process selected is referred to as demineralization.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, water distribution system, advanced treatment solutions, water plant, hydrogen sulfide (H2S), media packing, Decarbonation, ION Exchange Resin, decarbonator, degasifier, RO system, H2S Degasifier, Aquaculture, degassed water, Co2 ph, removal of CO2 from water, Deagasification, decarbonation of water, hydrogen ion, particulate matter, municipal water systems, industrial facilities, automated control systems, Ion exchange, cations, anions

Benefits of Pressure Filters for Industrial Water

Posted by Anthony DeLoach, President on Jan 4, 2022 1:00:00 PM

Industrial water systems often use water filters to reduce the level of solids in the water coming from industrial, semiconductor, manufacturing, refining, or even processes like oil and natural gas production.

 

The wastewater may contain chemicals that are harmful to humans, plants, or animals. There are three types of filters that are commonly used in industrial settings: Gravity filters, pressure filters, and constructed wetlands. Pressure filters have two variations which include multimedia and higher-pressure micron or cartridge filters. Constructed wetland or natural filters are not often utilized in industrial applications based on the requirements to obtain environmental permits and to safeguard the ecosystem.

 

There are many benefits to pressure filtering industrial wastewater. Pressure filters can remove particles down to 0.3 microns in size, they don't clog up as easily as other filter types, and it's much faster than other types of filtration methods. Pressure filtering is also very cost-effective because it uses less energy than other methods do. If you're looking for a high-quality industrial water filter, look no further!

 

Pressure Filters  (Multimedia type) are often used in industrial settings to remove particles down to 15 microns in size. They're also very cost-effective due to the amount of energy they use; pressure filters utilize much less energy than other filtration methods. Pressure filters can include multimedia which is a mixture of gravel and sand, multimedia which combines gravel, sand, and anthracite, or multimedia which combines gravel, sand, greensand, and anthracite. The variations are dependent on the applications and the need.

Read More

Topics: water quality, water treatment, water plant, media packing, ION Exchange Resin, RO system, Pressure filter, Sand filters, Filter Media, industrial facilities, green sand, Gravity Filters, Constructed Wetlands

Technology to Remove Per- & Polyfluorinated Substances

Posted by Anthony DeLoach, President on Dec 14, 2021 1:00:00 PM

Per-and polyfluorinated substances (PFAS) have been used for decades in many consumer products, and they are man-made and have a high residual time in the environment. These chemicals are used for various purposes, including nonstick surfaces, heat protection of circuits, water resistance, fighting fire as they are utilized in fire depression foam, and many other industrial applications. The difficult thing about PFAS is that the very reason they work so well on so many manufactured products is why they are so challenging to get rid of or treat once they have entered the environment or water supply. PFAS are being more and more regulated, and requirements are being put in place by many states and agencies to require the treatment and removal of PFAS and safeguard and protect drinking water.

PFAS are soluble in water, and they are not a volatile organic chemical (VOC), so traditional treatment methods such as utilizing an air stripping tower or degasification system are not effective methods to remove PFAS. One of the first technologies to remove PFAS from drinking water and the environment is activated carbon absorption. In recent years, utilizing ion exchange resins has proven effective and is gaining popularity for the treatment method. Ion exchange resins attach and bond with the PFAS and remove it effectively from the water. Some chemicals tested and studied with success include perfluorooctanoic acid (PFOS). In addition to these technologies, reverse osmosis utilizing high-pressure membranes has an 80-90% effective rate and has proven to be technically efficient in removing PFAS. An R.O. process produces a concentrated waste stream.

Read More

Topics: degasification, water treatment, advanced treatment solutions, water plant, ION Exchange Resin, wastewater, RO system, Deagasification

Using Aeration To Remove Iron from Water!

Posted by Anthony DeLoach, President on Oct 22, 2021 1:00:00 PM

Converting Ferrous (Fe+2) (soluble) iron to Ferric (Fe+3) (Particulate/Solid form).

The iron must first be exposed to air or another form of an oxidizing agent. Aeration is the most cost-effective method to oxidize ferrous iron for its removal from water. In many areas around the globe, municipal and industrial operations have the need to remove naturally occurring iron (Fe) from the water to both prevent damage to other equipment as well as to improve water quality. To remove iron from the water it first must be oxidized using the most widely accepted and cost-effective method called aeration. The aeration process changes the iron from its Ferrous (Fe+2) state (soluble) to ferric (Fe+3) a colloidal participate. Did you know that Iron occurs naturally and is found in the earth’s crust? It occurs in both groundwater as well as surface waters and is not known to cause any harmful effects on humans or animals.

Iron does cause problems though for municipal facilities and their customers by impacting laundry operations, causing stains on buildings, on plumbing fixtures. Iron also promotes and facilitates the growth of iron bacteria in water that creates a problem for distribution lines and piping systems. Once the lines become blocked this impacts the ability to distribute water to the customer. The presence of iron bacteria also becomes detectible even at low concentrations and impacts the taste of the water. The U.S Public Health Service Drinking Water Standard set a recommend maximum level of 0.3 mg/L in public water supplies.

Read More

Topics: aeration, Ferrous Iron, Iron

Decarbonation the Removal of CO2 from Water

Posted by Anthony DeLoach, President on Aug 16, 2021 2:08:54 PM

The basics of water decarbonation, the removal of CO2 from water

the removal of carbon dioxide (CO2). The need to remove (CO2) is essential in most Aquaculture, Municipal, Industrial, and Food & Beverage Processes To understand you must familiarize yourself with Henry’s Law.

Henry's Law defines the method and proportional relationship between the amount of a gas in solution

in relationship to the gases partial pressure in the atmosphere. Often you will see and hear various terms like degasification, decarbonation, aeration, and even air stripping when discussing the removal of dissolved gases and other convertible elements from water. Understanding the impacts that Carbon Dioxide (CO2) can have on both equipment and aquatic life provides the basic reasons why the need to decarbonate water, exists. Carbon Dioxide (CO2) can exist naturally in the raw water supply or be the results of ph control and balance. In either case the the process called Decarbonation or Degasification provide the most cost effective and efficient manner to reduce or tally remove (CO2) from the water. In addition to Carbon Dioxide (CO2), water can contain a variety of other contaminants that may impact the removal efficiency of the Carbon Dioxide. A variety of elements as well as dissolved gases such as oxygen, nitrogen and carbon dioxide (CO2). A full analytical review of the water chemistry is required to properly design and size the “Water Treatment” process.

Breaking the bonds in water to release a dissolved gas

such as carbon dioxide (CO2) you must change the conditions of the vapor pressure surrounding the gas and allow the gas to be removed.  There are many variables to consider when designing or calculating the “means and methods” of the removal of carbon dioxide (CO2). When I refer to the means and methods. I am referring to the design of a decarbonator and its components. The means equals the size and type (Hydraulic load) of the decarbonator and the “method” equals the additional variables such as cubic foot of air flow (CFM) and “Ratio” of the air to water to accomplish the proportional condition needed to remove the carbon dioxide (CO2).

Read More

Topics: water treatment issues, degasification, pH levels of water, aeration, iron oxidation, water treatment, water plant, bicarbonate, hydrogen sulfide (H2S), pH levels, Decarbonation, ION Exchange Resin, dissolved gases, De-Aeration, wastewater, carbon dioxide, oxygen, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier, removal of CO2 from water

Subscribe to our blog

Recent Posts