DELOACH BLOG

Decarbonation, The Removal of CO2 from Water.

Posted by Anthony DeLoach, President on Aug 16, 2021 2:08:54 PM

The basics of water decarbonation

the removal of carbon dioxide (CO2). The need to remove (CO2) is essential in most Aquaculture, Municipal, Industrial, and Food & Beverage Processes To understand you must familiarize yourself with Henry’s Law.

Henry's Law defines the method and proportional relationship between the amount of a gas in solution in relationship to the gases partial pressure in the atmosphere. Often you will see and hear various terms like degasification, decarbonation, aeration, and even air stripping when discussing the removal of dissolved gases and other convertible elements from water. Understanding the impacts that Carbon Dioxide (CO2) can have on both equipment and aquatic life provides the basic reasons why the need to decarbonate water, exists. Carbon Dioxide (CO2) can exist naturally in the raw water supply or be the results of ph control and balance. In either case the the process called Decarbonation or Degasification provide the most cost effective and efficient manner to reduce or tally remove (CO2) from the water. In addition to Carbon Dioxide (CO2), water can contain a variety of other contaminants that may impact the removal efficiency of the Carbon Dioxide. A variety of elements as well as dissolved gases such as oxygen, nitrogen and carbon dioxide (CO2). A full analytical review of the water chemistry is required to properly design and size the “Water Treatment” process.

Breaking the bonds in water to release a dissolved gas

such as carbon dioxide (CO2) you must change the conditions of the vapor pressure surrounding the gas and allow the gas to be removed.  There are many variables to consider when designing or calculating the “means and methods” of the removal of carbon dioxide (CO2). When I refer to the means and methods. I am referring to the design of a decarbonator and its components. The means equals the size and type (Hydraulic load) of the decarbonator and the “method” equals the additional variables such as cubic foot of air flow (CFM) and “Ratio” of the air to water to accomplish the proportional condition needed to remove the carbon dioxide (CO2).

Read More

Topics: water treatment issues, degasification, pH levels of water, aeration, iron oxidation, water treatment, water plant, bicarbonate, hydrogen sulfide (H2S), pH levels, Decarbonation, ION Exchange Resin, dissolved gases, De-Aeration, wastewater, carbon dioxide, oxygen, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier

Degasification for Pisciculture

Posted by Anthony DeLoach, President on Jul 23, 2019 11:03:53 AM

To enhance and balance the water quality

in aquaculture and pisciculture operations, the industry is recognizing the benefits from utilizing a type of water treatment called “Forced Draft Degasification” to remove CO2 (Carbon Dioxide) and H2S (Hydrogen Sulfide) gases and oxidize other elements such as Iron or Magnesium.

 Removing these elements from the water process improves the quality of the water and aids in the balancing of the pH without the need for additional chemicals.

Read More

Topics: De-Aeration, carbon dioxide, decarbonator, degasifier, gases, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Forced Draft Degasification Pre and Post Cation And Anion Exchange

Posted by Anthony DeLoach, President on Oct 23, 2018 7:49:53 AM

In the production and purification of water for industry there are many types of different processes available to remove harmful minerals and gases from the water stream but the most effective process and most cost effective from both a capital investment and operational cost is a “Forced Draft Degasification System” (Degasifier).

Degasification is used in a wide range of water processes

for industrial and municipal applications which extend from the production of chemicals to the production of semiconductors and in all applications the need to remove contaminants from the water and dissolved gases is key to achieving the end results needed in the industrial water process. Water from the ground often contains elements such as calcium carbonate, manganese, iron, salts, hydrogen sulfide, and sulfur just to name a few of the basic contaminants and these naturally occurring elements can cause serious damage and consequences to process equipment such as boiler systems, piping, membranes, and cation and anion exchange resins used in the demineralization process.

Calcium carbonate can dissolve in water under certain pH ranges forming carbonic acid and releasing carbon dioxide (CO2) gases. These gases are not only very corrosive to equipment like boiler feed systems and boiler tubes but also attack the actual resin beds found in cation and anion softening and demineralization system causing an increase in regeneration and chemical consumption and resin bed replacement.

By incorporating a Force Draft Degasification system you can remove dissolved gasses

like CO2 and hydrogen sulfide (H2S) to as low as 99.999% and improve the cation and anion system performance, extend the resin bed life, and lower the operating cost of the water treatment process.

Quite often Forced Draft Degasification is utilized “post” treatment to also remove newly formed dissolved gases prior to entering the boiler feed system to prevent corrosion damage within the tubes and feed system and pumps. These gases are easily removed with the forced draft degasifier at a much lower cost than chemical additives or liquid cell degasification that requires higher capital cost and much higher operating cost.

Read More

Topics: water treatment issues, degasification, pH levels of water, iron oxidation, water treatment, water distribution system, aluminum, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Langilier index (LSI), Decarbonation, ION Exchange Resin, dissolved gases, feed water, De-Aeration, wastewater, carbon dioxide, decarbonator, degasifier, carbonic acid, H2S Degasifier

Decarbonation of Water

Posted by Anthony DeLoach, President on Aug 7, 2018 10:16:40 AM

Requires an application commonly referred to

as either “Degasification” or "Decarbonation" and it requires the use of a piece of water treatment equipment called either a “degasifier” or a “decarbonator”. Both of these are similar in nature and are designed to remove Carbon Dioxide (CO2) from the incoming water. A properly designed decarbonator can remove 99.99% of the free carbon dioxide gas that is present in the water stream. One of the primary reason for utilizing a decarbonator or degasifier for the removal of CO2 is the raise the pH of the water without the need to add caustic.

The other reason is the remove the CO2 prior to treating the water with Ion Exchange which utilizes Anion or Cation resins to reduce the regeneration cycles for the resin beds. High concentrations of CO2 consume the ion charge within the resins and require more frequent regeneration cycles. The difference between anion and cation resins resins is that one is positively charged (anion) and the other is negatively charged (cation), cation resins, which attract positive ions with their negative charge.

Read More

Topics: water treatment issues, degasification, pH levels of water, aeration, iron oxidation, water treatment, water plant, bicarbonate, hydrogen sulfide (H2S), pH levels, Decarbonation, ION Exchange Resin, dissolved gases, De-Aeration, wastewater, carbon dioxide, oxygen, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier

Industrial Boiler Feed Water For Steam

Posted by Anthony DeLoach, President on Jul 31, 2018 10:01:00 AM

In the USA market alone it is estimated the manufacturing industry consumes over 400 millions of gallons per day (MGD) of water to produce steam. Approximately 60 millions of gallons per day (MGD) of water is sent to the blow down drains in manufacturing. Another approximate 300 millions of gallons per day (MGD) of steam is consumed for direct injection. All this steam required in manufacturing shares the same common need, “water”. But not only water but “purified and treated” water is needed. For without the treatment process US manufacturers would face constant shut downs and increased capital spending driving their cost of goods through the roof. One form of water treatment to protect boilers is degasification and deaeration.

Read More

Topics: water treatment issues, degasification, iron oxidation, water treatment, water distribution system, advanced treatment solutions, water plant, hydrogen sulfide (H2S), Decarbonation, ION Exchange Resin, feed water, De-Aeration, steam generation, steam generating boilers, carbon dioxide, steam, decarbonator, boiler system, degasifier, gases, RO membrane, carbonic acid, RO system, H2S Degasifier

Industrial Odor Control: The Do’s and Don’ts

Posted by Anthony DeLoach, President on Jul 26, 2018 8:32:00 AM

When planning or designing an odor control system one should pay close attention to several key variables that can cause havoc on a chemical odor control scrubber when trying to treat hydrogen sulfide or ammonia gases.   The need for odor control occurs for many different forms and it is important to have a good understanding of the process that is creating the odorous or corrosive gas and the need for the odor control & air emissions treatment.

First begin to identify

all the potential obstacles that may creep up later after the chemical odor or corrosive gas control system goes on line like acid or caustic consumption. As an example, chemical odor control systems that are designed for water treatment for the municipal industry are typically needed and attached to a degasfication or decarbonation process which are often needed to treat hydrogen sulfide (H2S). However, many times designers may not pay close enough attention to the type of water process that is available to use for “make-up” water for the chemical scrubber and with the addition of caustic this can create scaling or fouling. This unknown variable of the make up water quality can lead to a complete tower shutdown if the chemical scrubber distribution and media bed scales or fouls. The most commonly used chemicals for a hydrogen sulfide (H2S) scrubber are either chlorine in the form of sodium hypochlorite or caustic in the form of caustic soda. Both of these chemicals are both common to a water treatment facility and already in place for the adjustment and control of pH.

Read More

Topics: odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Alkalinity, Langilier index (LSI), scaling, chlorine, caustic, ION Exchange Resin, Safe drinking water, dissolved gases, De-Aeration, carbon dioxide, oxygen, degasifier, gases, H2S Degasifier

Steam Process Water Systems

Posted by Anthony DeLoach, President on Jun 26, 2018 8:06:00 AM

Degasification towers remove hydrogen sulfide (H2S), carbon dioxide (CO2), and quite often dissolved oxygen (O2).  In process water systems where the water will be used to heat and turn into steam it is critical that the water chemistry be fully understood and a properly designed treatment system utilizing degasification, decarbonation, or deaeration to be applied. Removing dissolved gases is critical to the life and efficiency of the boiler and allowing dissolved gases such as carbon dioxide to remain in the water is a recipe for disaster and reduced life. The (CO2) will convert into carbonic acid and form a corrosive condition for the boiler and other critical components. In addition, the removal of the (CO2) will elevate the pH of the water without the addition of caustics. The selection of what type of degasification tower system should be based on the specific applications, site conditions, and water chemistry. DeLoach Industries understands the many different requirements needed for each individual Industrial Water Treatment system. For more information or to learn more contact the professionals at DeLoach Industries Inc. at (941) 371-4995.

Read More

Topics: De-Aeration, carbon dioxide, oxygen, steam, decarbonator, degasifier, carbonic acid

Are All Distribution Systems Equal?

Posted by Anthony DeLoach, President on Jun 21, 2018 8:01:00 AM

Do you think all distribution systems are made equal? 

Well if you do you may be surprised that there are a lot of variation in manufacturing protocols in aerators, degasifiers and decarbonators.  Aerators are often found in use at Industrial Water Treatment and municipal water treatment facilities around the globe. 

For water treatment you may be surprised to learn that one of the key items that separate different types of aerators and decarbonators  for water treatment is the type of distribution system it utilizes.  To improve Carbon Dioxide (CO2) or Hydrogen Sulfide (H2S) removal you need to select the best distribution system for the tower and make sure its maintained. Now, there are many types of aerators in general and the term is used broadly. From floating pond aerators, to waste water aerators, to vertical tower aerators, decarbonators and degasifiers for industrial water treatment aerators.  We will focus on the vertical tower aerators for industrial water treatment.  All types of Aerators and even degasifiers and even decarbonators and Odor Control Scrubbers require some type of distribution system to begin the process of gas transfer and to remove Hydrogen Sulfide (H2S) from water or Carbon Dioxide (CO2).  It is important to evenly distribute the water or chemical solution across the media bed. 

There are several types of distribution systems available and the three most common ones you will see on the market place are the “Tray” type, Weir, or the header lateral utilizing gas release “Nozzles”.   

The selection of what type of distribution system is typically driven from the marketing side of who is selling you the tower.  But in terms of real performance a distribution system utilizing a nozzle system will outperform a tray type distributor.  All packed towers are design utilizing the Henry’s Law Constant” theory of chemistry and what all towers rely upon is some type of method to break the surface tension of the water and expose the molecules of gases so that they either can escape or can be introduced to a reaction agent.

When towers are designed it is important to properly hydraulically load the top of the media bed.  This is Considered " Degasification Basics". This is important for many reasons and we will address these points in future updates.  When using a properly designed nozzle distribution system such as a DeLoach Industries header lateral system then you get the benefit of both proper hydraulic load across the bed but you also gain anywhere from 4-10% of removal efficiency depending upon the application.  When looking at a chemical scrubber verses a biological scrubber you will notice they too have very different distribution systems. DeLoach Industries, Inc. has learned over their 60 years in business how to maximize gas transfer release.  If designed and built properly the gas release process or interaction process (if designing a scrubber) has already began “before” it enters the media bed. 

Read More

Topics: water treatment issues, aeration, Decarbonation, De-Aeration, decarbonator, degasifier

Deaeration Vs. Decarbonation

Posted by Anthony DeLoach, President on Jun 14, 2018 8:00:00 AM

The term De-Aeration refers to a specific process utilized to remove carbon dioxide as well as dissolved oxygen from a water stream. Typically associated with boiler feed water systems and utilized as a method to remove Carbon Dioxide (CO2) and Oxygen (O2) from the water prior to entering the boiler. The Decarbonation system also removes Carbon Dioxide (CO2) from the water and typically does not target the removal of Oxygen (O2). A De-Aeration system utilizes steam which enters at the bottom of the tower. The inlet feed water is heated, as close to saturation temperature as possible utilizing a minimum pressure drop and a limit on the vent. This ensures the best thermal operating efficiency of the tower.

Read More

Topics: media packing, Decarbonation, De-Aeration, carbon dioxide, oxygen, steam, decarbonator

Dearation

Posted by Anthony DeLoach, President on May 31, 2018 12:00:00 AM

The process of removing dissolved gases from feed water to steam-generating boilers is often referred to as “Deaeration”. During the deaeration process dissolved oxygen (02) and carbon dioxide (CO2) are removed prior to entering the boiler. If the gases are not removed prior to reaching the boiler system, the boiler will experience serious corrosion damage. The gases, when in contact with the metallic equipment will form oxides (rust) and it will attach to the walls of the piping and tubes and over time completely shut down the boiler. The dissolved carbon dioxide combines with the water and forms carbonic acid that also further enhances the corrosion process.

Read More

Topics: Decarbonation, dissolved gases, feed water, De-Aeration, steam generating boilers, carbon dioxide, oxygen, steam, decarbonator, boiler system

Subscribe to our blog

Recent Posts