.header-container, .body-container, .footer-container { max-width: 1080px; margin: 0 auto;

DELOACH BLOG

Flow Measurement in Water Systems

Posted by Matthew C. Mossman P.E. on Sep 28, 2021 11:45:00 AM

In water treatment systems it is often important to measure the rate at which water is flowing through the system. Data from flow measurement devices can be used to control chemical dosing, set pump speeds, control filter loading rates, inform maintenance programs, and other tasks necessary for the operation of a water treatment facility or on key components such as Degasification and Decarbonation systems or Biological Odor Control Systems. As with most types of instrumentation, there is an array of technologies that can be used for the task, each one with various strengths and optimal applications. For modern electronically controlled systems, the most common types of flow sensors used are axial turbine flowmeters, paddlewheel flowmeters, differential pressure/orifice plate flow transducers, and magnetic flowmeters. This article will briefly discuss the technology and features of each of these types.

A turbine flow meter,

consists of a tube that contains supports to hold a multi-bladed metal turbine in the center. The turbine is designed to have close clearance to the walls of the tubing such that nearly all of the water is made to flow through the turbine blades as it travels through the pipe. The turbine is supported on finely finished bearings so that the turbine will spin freely even under very low flows. As the turbine spins, a magnetic pickup located outside of the flowmeter housing is used to sense the tips of the turbine blade spinning past the pickup. An amplifier/transmitter is then used to amplify the pulses and either transmit them directly or convert the pulse frequency into an analog signal that is then sent to a programmable controller for further use elsewhere in the system. One advantage of a turbine flowmeter is that the electronics are separated from the fluid path. The magnetic pickup is the only electronic component, and it is installed outside of the turbine housing, reading the presence of the turbine blade tips through the wall of the sensor body. In clean water applications, this can be advantageous because the magnetic pickup can be replaced if needed without removing the turbine from service. However, the turbine itself covers most of the pipe area and creates back pressure in the system, requiring increased pumping energy to move a given amount of water. In Industrial Water Treatment or Filtration Treatment,  turbines can also easily become fouled or jammed if they are used to measure water or other fluids with entrained solids, algae or bacteria cultures which cause significant accumulation, or corrosive chemical components that can degrade the turbine bearings.

Read More

Topics: water quality, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, pumps, Alkalinity, Safe drinking water, wastewater, Recycling, pharmaceutical water, Aqua Farming, Aquaculture, Pipe Size, municipal water systems, industrial facilities, DeLoach Industries, Inc., actuated valves, pump controls, Drinking Water, Clean Water, Water Test, Water Test Kit, DeLoach Industries, civil engineers

Ph Probes and Periodic Re-Calibration

Posted by Matthew C. Mossman P.E. on Aug 25, 2021 1:00:00 PM

In many water treatment and chemical processes,

it is a requirement to keep track of the pH of the water or product stream. In DeLoach Industries equipment such as degasification systems, or odor control scrubbers, pH measurement is critical to control the chemical reactions happening within the treatment system. PH is an indication of the acidic vs alkaline nature of the fluid. An acidic fluid will have a greater concentration of H+ hydrogen ions, while an alkaline fluid will have a greater concentration of OH- hydroxide ions. This electrochemical nature is used in the construction, reading, and maintenance of electronic pH probes.

PH probes are generally glass and will contain a reference element, and a sensing element. When the pH probe is immersed in the fluid to be measured, the electrical potential difference between the sensing element and the reference element is amplified by electronics and the resulting voltage is used in a calculation to determine pH from differential electron potential. As a pH probe remains in service, ion exchange will slowly change the electrical potential of the sensing element, the reference element, or both. This happens because the hydrogen ions are small enough to travel through the glass sensor body and cause reference potential shifts over time. This is normal behavior for all pH probes and is the reason why pH probes must be periodically calibrated.

Calibration is a process where a pH probe is immersed in a series of standardized stable pH solutions called “buffers”. The standard set of buffers includes a pH 4.0 acidic buffer, a pH 7.0 neutral buffer, and a pH 10.0 alkaline buffer. These buffer solutions are chemically designed to hold a stable pH and are used as a reference for the internal calculations that are done by the pH amplifier or transmitter that interprets the reading taken by the pH probe. As the reference voltage vs actual pH for a mature probe changes, the known buffer solution provides a benchmark for the calculation. Each pH instrumentation manufacturer will have a slightly different method for performing a calibration, but in general, the system will have you step through the buffer solutions while an automated routine makes note of the expected voltage vs calibration voltage at each step. The computation algorithm will use this drift information to re-scale the calculation to re-establish accuracy.

Read More

Topics: water treatment issues, water quality, pH levels of water, iron oxidation, water treatment, advanced treatment solutions, hydrogen sulfide (H2S), pH levels, Alkalinity, ION Exchange Resin, carbon dioxide, gases, RO system, Aqua Farming

Aqua Farming

Posted by Anthony DeLoach, President on Sep 11, 2018 9:09:00 AM

To enhance and control the production and quality of seafood grown and harvested.

The industry increasingly focuses on constructing in-house aquaculture fish farms, commonly called aqua farming. The most popular species of aqua farming continue to be salmon, tilapia, catfish, and carp. Increased interest in the United States has developed aqua farming facilities in southern Florida with favorable climate and water conditions.

When considering several types of fish species to grow for harvest, it is important to remember the need to control the water quality. If the aqua farm is intended to utilize man-made tanks, they will depend upon a constant flow of incoming water. If the aqua farm focuses on salmon, the water quality and temperature play a major role in the operation's mortality rates and production yields.

Having water with too high of hydrogen sulfide, carbon dioxide, total Organic carbons, and even turbidity can increase mortality rates among the younger fish species and is especially critical to salmon.

Having high levels of metals

Such as Iron that is identified as either “ferric” (Fe-) or “ferrous” (FE+2) and is naturally occurring within the Florida waters and other parts of the US will cause significant damage to young salmon species because the metal accumulates within the gills of the fish causing suffocation. Other metals are also detrimental to fish, including copper, aluminum, arsenic, cadmium, chromium, Lead, manganese, and mercury, to name a few, and the water quality must be evaluated and tested in the early stages of design to anticipate the required types of process systems needed.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, hydrogen sulfide (H2S), pH levels, Alkalinity, Decarbonation, carbon dioxide, oxygen, decarbonator, degasifier, carbonic acid, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Water Treatment in Aquaculture

Posted by Anthony DeLoach, President on Sep 6, 2018 10:11:28 AM

Water Treatment

When planning and designing a man made on land aquaculture or pisciculture facility.

The most important key element is the quality of the water. For operations developing in Florida or the Caribbean it is important to remember that water quality varies in Florida and other states in the US and typically requires some type of water treatment. For fresh and salt water land based farms that utilize tanks located inside of a building the water needs to be treated and pure from any naturally occurring contaminants such as hydrogen sulfide (H2S), iron (Fe+), and even carbon dioxide (CO2).

The most cost effective way to treat incoming water for aquaculture farming and remove hydrogen sulfide, iron, and lower carbon dioxide is the use of a “degasification” tower. A degasification tower or degasifier is a piece of process equipment. Degasifiers can also be referred to as a “decarbonator” or “air stripper” or even “aeration tower”. The degasification tower is a vertical column designed to remove certain types of contaminants by “stripping” the molecules of converted gases and expelling them from the water as a gas. The science is based upon “Henry’s Law” and it relies upon the disproportionate varying vapor pressures of gases.

If the incoming raw water contains levels of sulfides or hydrogen sulfide gases it is recommended to remove the hydrogen sulfide to improve the water quality and reduce the risk of the development and formation of bacteria that can thrive on the Sulfur. In addition hydrogen sulfide is corrosive and will cause harm to other components within the process if left untreated. It is important to adjust the pH of the raw feed water prior to degasification to ensure full conversion of the sulfides into hydrogen sulfide gas (H2S) to enable the degasification process to perform and remove up to 99.99% of the harmful contaminants without adding additional chemicals. This saves money and improves quality of the product!

Read More

Topics: water quality, degasification, pH levels of water, water treatment, hydrogen sulfide (H2S), pH levels, Alkalinity, Decarbonation, Caribbean, carbon dioxide, decarbonator, degasifier, gases, carbonic acid, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Reverse Osmosis-A walk in time

Posted by Anthony DeLoach, President on Aug 21, 2018 8:53:00 AM

DeLoach Industries made history in 1977 at the City of Cape Coral Florida water treatment plant with its large scale “degasification towers” connected to what was to become the first municipal water treatment facility in the United States to deploy the use of reverse osmosis on a large-scale production municipal treatment plant.

The Cape Coral water treatment plant for came online in 1977 and produced 3 million gallons of water per day (GPD) or 11.35 liters of purified and treated water utilizing the “reverse osmosis” process. By 1985 the plant had expanded as it kept up with growth to produce 15 million gallons per day making it at the time the world’s largest “reverse osmosis” water treatment plant facility.

Read More

Topics: water quality, pH levels of water, water treatment, advanced treatment solutions, water plant, hydrogen sulfide (H2S), pH levels, Alkalinity, scaling, chlorine, caustic, Decarbonation, wastewater, carbon dioxide, degasifier, RO membrane, RO system, H2S Degasifier

Industrial Odor Control Scrubber: The Do’s and Don’ts

Posted by Anthony DeLoach, President on Jul 26, 2018 8:32:00 AM

Avoid problems with calcium chlorite and corrosive gasses with your odor control scrubber.

When planning or designing an odor control system, one should pay close attention to several key variables that can cause havoc on a chemical odor control scrubber when trying to treat hydrogen sulfide or ammonia gases. The need for odor control occurs in many different forms. It is essential to understand the process that is creating the odorous or corrosive gas and the need for odor control & air emissions treatment.

First, begin to identify

all the potential obstacles that may creep up later after the chemical odor or corrosive gas control system goes online, like acid or caustic consumption. For example, chemical odor control systems designed for water treatment for the municipal industry are typically needed and attached to a degasification or decarbonation process, often needed to treat hydrogen sulfide (H2S). However, designers often may not pay close enough attention to the type of water process available for “make-up” water for the chemical scrubber. The addition of caustic can create scaling or fouling. This unknown variable of the makeup water quality can lead to a complete tower shutdown if the chemical scrubber distribution and media bed scales or fouls. The most commonly used chemicals for a hydrogen sulfide (H2S) scrubber are either chlorine in the form of sodium hypochlorite or caustic in the form of caustic soda. Both of these chemicals are common to a water treatment facility and are already in place to adjust and control pH.

The makeup water plays a significant role in the operation of a chemical scrubber.

When water containing high hardness levels is used as the source for the makeup water, your chemical scrubber can become fouled, and scaling can occur in a matter of hours, depending on the alkalinity and salts within the water. Solidification can occur from the scaling when combining sodium hypochlorite and raw feed water at specific pH ranges and these ranges are usually the range needed to achieve peak performance. Calcium chloride will form, and your chemical odor control scrubber will become a solid chunk of calcium chlorite making, making the ability for water or air to pass freely through the media packing next to impossible. No matter what type of media packing is utilized in the odor control or gas scrubber, it can foul and scale if the water chemistry is incorrect.  Trust me when I say “been there and done that”!  I have seen operators who have allowed a chemical scrubber to become out of balance with pH control and completely solidify the tower column to the degree that neither air nor water passage is possible. The problem can still occur with ammonia scrubbers but are different with different sets of parameters.

Read More

Topics: odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Alkalinity, Langilier index (LSI), scaling, chlorine, caustic, ION Exchange Resin, Safe drinking water, dissolved gases, De-Aeration, carbon dioxide, oxygen, degasifier, gases, H2S Degasifier, calcium chlorite

Water with Artificial Intelligence

Posted by Anthony DeLoach, President on Jul 12, 2018 9:08:00 AM

Ten years ago if I had purposed that one day our water would have artificial intelligence I think I would have been laughed out of the industry. But now, anything you can imagine with the new electronic revolution is possible because of the current revolution referred to as “The Internet of Things” (IoT). Placing nano-size SIP (Systems in a package) into a water stream and tracking its path or location or performing inspections on critical infrastructure or equipment is now a reality.

Read More

Topics: degasification, water treatment, advanced treatment solutions, water plant, phosphate levels, pH levels, Alkalinity, Global, decarbonator, degasifier

Caribbean Water Treatment Challenges

Posted by Anthony DeLoach, President on May 24, 2018 12:00:00 AM

Water treatment in the Caribbean poses unique challenges due to the specific characteristics of the region.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, water plant, odor control scrubber, pH levels, Alkalinity, Recycling, Caribbean, Global

Removing Hydrogen Sulfide In Water (H2S H2O)

Posted by Anthony DeLoach, President on Apr 30, 2018 12:00:00 AM

Do you need to remove or increase your reverse osmosis system's hydrogen sulfide removal efficiency?

The industrial water treatment market has many forms of water treatment processes. Most of us would agree that maintaining high water standards and quality requires using multiple treatment systems to achieve results.  Let’s face it, we do not win or get a “that a boy” when we design and build the best reverse osmosis system.

When we turn the brand-new water system on, the water has a "rotten egg odor." Yes, that is an embarrassing moment! 

The problem is we typically design around what we can see or read.  When was the last time you reviewed a water sample that provided details of how much-dissolved gas was in the water?  Most likely never.  A typical water treatment system may deploy reverse osmosis as the primary treatment method, and why true RO will remove particles that have size and weight (ions and molecules) typically defined as a certain size (micron), but RO does nothing to remove the dissolved gases that are already entrained within the water naturally or were created by adjusting the pH.  

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, hydrogen sulfide (H2S), pH levels, Alkalinity, Langilier index (LSI), H2S Degasifier, H2S H2O, removing hydrogen sulfide in water

Are pH And Alkalinity The Same? Balancing Alkalinity Levels

Posted by Anthony DeLoach, President on Apr 24, 2018 8:13:04 AM

Are pH and Alkalinity the Same? Balancing Alkalinity Levels for Optimal Water Quality

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water distribution system, advanced treatment solutions, Alkalinity

Subscribe to our blog

Recent Posts