DELOACH BLOG

How to Remove Nanoparticles from Your Drinking Water‍

Posted by Anthony DeLoach, President on Jul 22, 2022 1:14:33 PM

If you’ve been reading the news lately, you know nanoparticles are not so great. In everything from cosmetics to water filters, nanoparticles have been shown to cause various health problems. But what exactly are nanoparticles, and how can you protect yourself from their harmful effects? Let’s answer these questions and more with this quick guide on removing nanoparticles from your drinking water.

What are Nanoparticles?

Nano is a prefix that’s used to indicate how small something is. In the case of nanoparticles, it means particles less than 100 nanometers. Water filters that use nanoparticles are generally around 0.2 to 0.3 microns or 2,000 to 3,000 nanometers. That’s pretty small. There are some health concerns with nanoparticles. When ingested, they can cause inflammatory reactions in the body, disrupt normal organ function, and lead to a buildup of fluids in the lungs or other organs. A 2017 study found that the number of nanoparticles in drinking water is higher than expected and that using carbon filtration may make some nanoparticles more likely to leach into the water.

Where Are Nanoparticles Found?

Nanoparticles are found in a lot of modern products. Their small size makes them ideal for air and water filters, sunscreens, and cosmetics. It’s important to note that not all nanoparticles are harmful. Some are beneficial. Nanoparticles of silver are often added to water filters to help remove bacteria and other contaminants from drinking water. There are a few places where nanoparticles are most often found. - In water filters - Nanoparticles are often added to water filters to help remove bacteria and harmful contaminants. - In sunscreens - Some sunscreen products contain nanoparticles of zinc oxide, titanium dioxide, and other minerals that provide broad UV protection. - In cosmetics - Many makeups, lip balms, and other beauty products contain nanoparticles of iron, titanium dioxide, zinc oxide, and other minerals that help preserve the product and provide color.

Read More

Topics: water treatment issues, water quality, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, safety, Safe drinking water, Global, distillation, RO membrane, RO system, particulate matter, filters, municipal water systems, residential well water systems, DeLoach Industries, Inc., Drinking Water, Clean Water, Water Test, Water Test Kit, DeLoach Industries, technology, minerals, temperature, nanoparticles, Cosmetics, Nano, make-up, organ function, contaminants, pressure filters, reverse osmosis, carbon filters, UV filters, activated carbon

Treating Noxious Fumes with an Odor Control Scrubber.

Posted by Anthony DeLoach, President on May 24, 2022 1:00:00 PM

A manufacturing facility cannot ignore the importance of odor control.

 

The smell from chemicals, vapors, and fumes can spread quickly in a small area. They cause discomfort to workers and pose health risks to them. In addition to that, excess vapors directly impact the efficiency of exhaust or natural ventilation systems. For example, an odor control scrubber tower is an additional layer in the ventilation system of a manufacturing plant or chemical processing facility that has issues with odors. These towers effectively remove noxious fumes and odors from ventilation exhaust streams using an activated carbon filter and an ionic air filter.

 

Reasons why you should consider installing an Odor Control Scrubber Tower :

 

Health & safety of workers.

 

Everyone working in an industrial environment, either directly or indirectly, is at risk of exposure to hazardous fumes and gases. At times, high concentrations of these gases may be emitted into the atmosphere in the form of unhealthy odors, putting the health and safety of the workers at risk. These gases may even be combustible in some cases, posing a significant threat to workers. The purpose of an odor control scrubber tower is to remove these gases from the contaminated air stream and help the workers stay safe. In addition, it reduces the risk of health issues such as nausea, headaches, loss of consciousness, allergy symptoms, dizziness, and many more. It also prevents workers from missing their daily performance targets due to sickness caused by toxic fumes.

 

Pro-environment step.

 

Although it is vital to protect the workers from exposure to harmful fumes, it is also essential to protect the environment. Odor control scrubbers are used in petrochemical refining, pharmaceutical, food & beverage, paper, mining, chemical, and pharmaceutical industries. Therefore, it is crucial to choose the right type of scrubber that suits your industry’s requirements. The right choice of equipment also protects the environment as it helps reduce operational costs and maintenance supervision. It also protects the environment because it produces minimal sludge and reduces the risk of corrosion.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, water distribution system, advanced treatment solutions, biological scrubber, water plant, safety, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, caustic, Safe drinking water, wastewater, gases, Biological Odor Control Scrubber, Biological odor control, what is a scrubber, municipal water systems, DeLoach Industries, Inc., Clean Water, Industrial Odor Control

PFAS in Drinking Water

Posted by Anthony DeLoach, President on May 4, 2022 1:05:00 PM

If you’ve been following the news, you know that there’s a growing problem with PFAS (per- and polyfluoroalkyl substances).

 

These man-made chemicals are found in everything from clothing to food packaging. While they are inexpensive and stable in products, some of these substances tend to break down into other substances, such as PFAS-methyl tetrahydrofuran. PFASs have been discovered in drinking water across the country, including in parts of the country with very high water tables. As a result, it’s important to learn how to remove contaminants from your drinking water. What should you do if you suspect that there’s a problem with your water? Check the source of the water, test it, and treat it if necessary.

Follow these steps to remove contaminants from your drinking water.

Test Your Water

Although it’s important to know how to remove contaminants in general, it’s even more important to know how to test your water for contamination. A water test kit can help you determine whether there are contaminants in your water and whether they are at a dangerous level. You can purchase water test kits at most grocery stores, hardware stores, and online retailers. Generally, these kits come with the standard set of tests for a home water filtration system, but they also often include tests for certain contaminants. Use these tests to determine whether your water is safe to drink or not. If your water contains contaminants, you need to remove them from your water source. This can be done by digging a deeper well, installing a water filtration system, or getting a water purification system. If your water does not contain contaminants, you don’t need to do anything except continue drinking your water.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, Chemical Odor, Safe drinking water, RO system, filters, Filter Media, residential well water systems, DeLoach Industries, Inc., backwash, Carbon Filter, Micron Filter, Drinking Water, Clean Water, Contaminated Water, Water Source, Sediment Filter, PFA's, Water Test, Water Test Kit

What Is Water Turbidity?

Posted by Anthony DeLoach, President on Mar 18, 2022 1:05:00 PM

Water turbidity refers to how clear or translucent the water is when examining or testing it for any given use.

Water turbidity can impact food and beverage, municipal, industrial, and aquaculture operations. Turbidity is caused by suspended or dissolved particles in the water that scatter light which causes the water to appear cloudy or even murky.

Different types of particles can cause turbidity and they include sediments such as silts and clay, very fine inorganic or organic matter, algae or soluble colored organic compounds, and microscopic organisms. Turbidity is measured in a value referred to as NTU, which means Nephelometric Turbidity Unit. The EPA requires in the USA a turbidity level no higher than 0.3 NTU, and if a member of the partnership of safe drinking water, then the level must not exceed 0.1 NTU.

High turbidity can create habitats for other harmful elements such as bacteria or metals that can accumulate onto the particles. This increases the health risk for a potable water system. In aquaculture operations, increased turbidity from silts and sediments can be harmful and detrimental to marine life, so it must be removed to safe levels. For the food and beverage industry, the impact of high turbidity can be both a safety concern as well as a visual and noticeable quality concern because if the turbidity is high, it can alter the physical look of the final product, for example, a distillery.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, water distribution system, advanced treatment solutions, water plant, Safe drinking water, De-Aeration, decarbonator, Aqua Farming, Fish Farming, Aquaculture, Pisciculture, Deagasification, particulate matter, filters, Sand filters, municipal water systems, industrial facilities, DeLoach Industries, Inc., turbidity

How to Remove PFA'S from Water

Posted by Anthony DeLoach, President on Feb 22, 2022 1:02:58 PM

The EPA and other world health organizations have recognized the dangers and health impacts of being exposed to PFASs.

 

Federal and State regulators are adopting new guidelines and laws for treating and removing PFASs. Often PFASs within potable drinking water systems or groundwater is contaminated with one of the various types of PFASs. There are over 4700 different variations of PFASs that have variations and at least three polyfluorinated carbon atoms.

 

Well over 10,000 types of PFASs are introduced into products that can and have impacted the drinking water in the USA and other countries. 

 

So what are PFASs?

 

PFASs are fluorinated substances that include at least one fully fluorinated methyl or methylene carbon atom and do not contain ( H/Cl/Br/I atoms). However, any chemical with at least a perfluorinated (CF3) or a perfluorinated (–CF2–) is a PFAS. There are a few exceptions. Different subgroups include surfactants, per fluorosulfonic acids, perfluorooctane sulfonic, perfluoro carboxylic, and perfluorooctanoic acids. Often referred to as PFOSs and PFOAs.

 

 

PFOS, PFOA, and other PFASs are persistent organic pollutants and are often referred to as the "forever chemicals" because they do not easily break down in the environment. These organic contaminants are found in humans, animals, and our water supplies across the USA. These chemicals started to be banned in 2021 when Maine took the lead as the first US state to implement the ban and discontinue their use by 2030 in all products unless there is no other current option than an exception may be granted.

Read More

Topics: degasification, pH levels of water, aeration, water treatment, advanced treatment solutions, water plant, NSF/ANSI 61, hydrogen sulfide (H2S), Decarbonation, ION Exchange Resin, Safe drinking water, decarbonator, degasifier, H2S Degasifier, degassed water, ansi61, Co2 ph, removal of CO2 from water, CO2 in water, Deagasification, hydrogen ion, Sand filters, green sand, greensand, DeLoach Industries, Inc., Ion exchange, cations, anions

Flow Measurement in Water Systems

Posted by Matthew C. Mossman P.E. on Sep 28, 2021 11:45:00 AM

In water treatment systems it is often important to measure the rate at which water is flowing through the system. Data from flow measurement devices can be used to control chemical dosing, set pump speeds, control filter loading rates, inform maintenance programs, and other tasks necessary for operation of a water treatment facility or on key components such as Degasification and Decarbonation systems or Biological Odor Control Systems. As with most types of instrumentation, there is an array of technologies that can be used for the task, each one with various strengths and optimal applications. For modern electronically controlled systems, the most common types of flow sensors used are axial turbine flowmeters, paddlewheel flowmeters, differential pressure / orifice plate flow transducers, and magnetic flowmeters. This article will briefly discuss the technology and features of each of these types.

A turbine flow meter,

consists of a tube that contains supports to hold a multi-bladed metal turbine in the center. The turbine is designed to have close clearance to the walls of the tubing such that nearly all of the water is made to flow through the turbine blades as it travels through the pipe. The turbine is supported on finely finished bearings so that the turbine will spin freely even under very low flows. As the turbine spins, a magnetic pickup located outside of the flowmeter housing is used to sense the tips of the turbine blade spinning past the pickup. An amplifier/transmitter is then used to amplify the pulses and either transmit them directly or convert the pulse frequency into an analog signal that is then sent to a programmable controller for further use elsewhere in the system. One advantage of a turbine flowmeter is that the electronics are separated from the fluid path. The magnetic pickup is the only electronic component, and it is installed outside of the turbine housing, reading the presence of the turbine blade tips through the wall of the sensor body. In clean water applications, this can be advantageous because the magnetic pickup can be replaced if needed without removing the turbine from service. However, the turbine itself covers most of the pipe area and creates back-pressure in the system, requiring increased pumping energy to move a given amount of water. In Industrial Water Treatment or Filtration Treatment,  turbines can also easily become fouled or jammed if they are used to measure water or other fluids with entrained solids, algae or bacteria cultures which cause significant accumulation, or corrosive chemical components that can degrade the turbine bearings.

Read More

Topics: water quality, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, pumps, Alkalinity, Safe drinking water, wastewater, Recycling, pharmaceutical water, Aqua Farming, Aquaculture, Pipe Size, municipal water systems, industrial facilities, DeLoach Industries, Inc., actuated valves, pump controls, Drinking Water, Clean Water, Water Test, Water Test Kit, DeLoach Industries, civil engineers

Water Treatment Compliance with NSF/ANSI 61 Certification

Posted by Anthony DeLoach, President on Jun 12, 2019 10:24:13 AM

 

The process of Decarbonation requires

the use of a vertically designed Degasification tower. A Decarbonation tower is specifically designed to remove Carbon Dioxide (CO2) from a water treatment process. When the water is being treated for “potable” use for direct or indirect consumption than all of the components used in the process must comply with NSF/ANSI 61 standard to assure that the components that have direct contact with the water are safe and will not introduce any foreign substance during the treatment process. Decarbonation towers have direct exposure and contact with the water during the removal of CO2 and therefore must be manufactured from material such as Fiberglass (FRP) that complies and meets the NSF/ANSI 61 standard.

Fiberglass FRP tanks and towers complying with NSF/ANSI 61 standard

requires the use of certified FRP resins and protocols during the fabrication process of the Decarbonation tower. It is normal protocol at DeLoach Industries Inc. to install a veil lining inside of a Decarbonator or Degasification tower that complies with NSF/ANSI 61 standards to safeguard all potable water projects. Decarbonators are utilized in the food and beverage industry, municipal industry, pisciculture, semiconductor industry, and other industrial markets. In addition to the Decarbonator complying with the NSF/ANSI 61 standard it is equally important that the fiberglass (FRP) tanks also comply with the same standard and follow the same protocols during the manufacturing process. The NSF/ANSI 61 standard was developed to safeguard the public and provide assurances that water is free from impurities.

Read More

Topics: water treatment, NSF/ANSI 61, Safe drinking water

The Basics of Water Decarbonation

Posted by Anthony DeLoach, President on Feb 25, 2019 1:04:12 PM

Basics of water decarbonation for dissolved organic carbon.

The water treatment industry continues to develop and evolve and over the past two decades there have been many new developments in technology and even more refinement in existing technologies such as "Degasification". The evolution and advancement of water treatment have been driven by the constantly increasing demand from an increase in population that demand cost-effective solutions and recognition to improve safety with the implementation of NSF 61 standards.

All human cultures on our planet share a single commonality and that is the dependency on water to survive.

Many existing technologies such as "Degasification" have evolved with higher efficiency to meet the demand changes and provide safety to consumers and to the systems. Degasification refers to the removal of dissolved gases from liquids and the science to degasify water is based upon a chemistry equation known as "Henry's Law". The "proportionality factor" is called Henry's law constant" and was developed by William Henry in the early 19th century. Henry's Law states that "the amount of dissolved gas is proportional to its partial pressure in the gas". The most "cost" effective method to perform degasification is with the packed vertical tower called a "Degasifier” or “Decarbonator”.

The key words in this previous sentence for owners, operators, and engineers to focus on is "the most cost-effective" as there is no other process more cost-effective at removing dissolved gases at the lowest cost than the use of a Degasifier or decarbonator. The process of degasification is simple enough to understand. Water is pumped to the top of a vertically constructed tower where it first enters the tower through some type of distribution system at the same time there is a cross current air flowing up from the bottom by a blower located at the bottom of the tower and the air encounters the water and is exhausted at the top of the tower through an exhaust port. There are various types of distributions systems and we will explore these in later discussions. Once the water enters the top of the tower and passes through the distribution system it then travels by gravity downward. The next thing the water encounters is some type of media packing. There are various forms of media packing offered in the degasification industry and each type can offer higher performance or have the ability to deter fouling. The selection of the type, size, and volume is where the “experience, engineering and understanding of each application” comes in to play.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, NSF/ANSI 61, hydrogen sulfide (H2S), media packing, pH levels, scaling, caustic, Decarbonation, Safe drinking water, dissolved gases, carbon dioxide, decarbonator, boiler system, degasifier, carbonic acid, H2S Degasifier, Dissolved organic Carbon, co2 dissolved in water

Industrial Odor Control: The Do’s and Don’ts

Posted by Anthony DeLoach, President on Jul 26, 2018 8:32:00 AM

Avoid problems with calcium chlorite, and corrosive gasses with your odor control scrubber.

When planning or designing an odor control system one should pay close attention to several key variables that can cause havoc on a chemical odor control scrubber when trying to treat hydrogen sulfide or ammonia gases.   The need for odor control occurs in many different forms and it is important to have a good understanding of the process that is creating the odorous or corrosive gas and the need for odor control & air emissions treatment.

First, begin to identify

all the potential obstacles that may creep up later after the chemical odor or corrosive gas control system goes online like acid or caustic consumption. As an example, chemical odor control systems that are designed for water treatment for the municipal industry are typically needed and attached to a degasification or decarbonation process which is often needed to treat hydrogen sulfide (H2S). However, many times designers may not pay close enough attention to the type of water process that is available to use for “make-up” water for the chemical scrubber and the addition of caustic can create scaling or fouling. This unknown variable of the makeup water quality can lead to a complete tower shutdown if the chemical scrubber distribution and media bed scales or fouls. The most commonly used chemicals for a hydrogen sulfide (H2S) scrubber are either chlorine in the form of sodium hypochlorite or caustic in the form of caustic soda. Both of these chemicals are common to a water treatment facility and are already in place for the adjustment and control of pH.

The makeup water plays a significant role in the operation of a chemical scrubber.

When water containing high levels of hardness levels is used as the source for the makeup water your chemical scrubber can become fouled and scaling can occur in a matter of hours depending on the alkalinity and salts within the water. Solidification can occur from the scaling when combining sodium hypochlorite and raw feed water at certain pH ranges and these ranges are normally the range needed to achieve peak performance. Calcium chloride will form and your chemical odor control scrubber will become a solid chunk of calcium chlorite making the ability for water or air to pass freely through the media packing next to impossible. No matter what type of media packing is utilized in the odor control or gas scrubber it can foul and scale if the water chemistry is incorrect.  Trust me when I say “been there and done that”!  I have seen operators who have allowed a chemical scrubber to become out of balance with pH control and completely solidify the tower column to the degree that neither air nor water passage is possible. With ammonia scrubbers, the problem can still occur but are different with different sets of parameters.

Read More

Topics: odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Alkalinity, Langilier index (LSI), scaling, chlorine, caustic, ION Exchange Resin, Safe drinking water, dissolved gases, De-Aeration, carbon dioxide, oxygen, degasifier, gases, H2S Degasifier, calcium chlorite

Recycling Wastewater For Safe Drinking Water

Posted by Anthony DeLoach, President on May 29, 2018 12:00:00 AM

Over the last 2 decades there has been vast development and improvement of wastewater technologies in regards to the water treatment processes that have been driven by both need and governmental regulations. Today, municipalities and Countries are recognizing the need to recycle wastewater into drinking water and in locations such as the Caribbean and other foreign nations the wastewater to drinking water industry is more of a “must” than a choice.

Read More

Topics: water quality, advanced treatment solutions, Safe drinking water, wastewater, Recycling, Caribbean, Global

Subscribe to our blog

Recent Posts