DELOACH BLOG

How to Remove Nanoparticles from Your Drinking Water‍

Posted by Anthony DeLoach, President on Jul 22, 2022 1:14:33 PM

If you’ve been reading the news lately, you know nanoparticles are not so great. In everything from cosmetics to water filters, nanoparticles have been shown to cause various health problems. But what exactly are nanoparticles, and how can you protect yourself from their harmful effects? Let’s answer these questions and more with this quick guide on removing nanoparticles from your drinking water.

What are Nanoparticles?

Nano is a prefix that’s used to indicate how small something is. In the case of nanoparticles, it means particles less than 100 nanometers. Water filters that use nanoparticles are generally around 0.2 to 0.3 microns or 2,000 to 3,000 nanometers. That’s pretty small. There are some health concerns with nanoparticles. When ingested, they can cause inflammatory reactions in the body, disrupt normal organ function, and lead to a buildup of fluids in the lungs or other organs. A 2017 study found that the number of nanoparticles in drinking water is higher than expected and that using carbon filtration may make some nanoparticles more likely to leach into the water.

Where Are Nanoparticles Found?

Nanoparticles are found in a lot of modern products. Their small size makes them ideal for air and water filters, sunscreens, and cosmetics. It’s important to note that not all nanoparticles are harmful. Some are beneficial. Nanoparticles of silver are often added to water filters to help remove bacteria and other contaminants from drinking water. There are a few places where nanoparticles are most often found. - In water filters - Nanoparticles are often added to water filters to help remove bacteria and harmful contaminants. - In sunscreens - Some sunscreen products contain nanoparticles of zinc oxide, titanium dioxide, and other minerals that provide broad UV protection. - In cosmetics - Many makeups, lip balms, and other beauty products contain nanoparticles of iron, titanium dioxide, zinc oxide, and other minerals that help preserve the product and provide color.

Read More

Topics: water treatment issues, water quality, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, safety, Safe drinking water, Global, distillation, RO membrane, RO system, particulate matter, filters, municipal water systems, residential well water systems, DeLoach Industries, Inc., Drinking Water, Clean Water, Water Test, Water Test Kit, DeLoach Industries, technology, minerals, temperature, nanoparticles, Cosmetics, Nano, make-up, organ function, contaminants, pressure filters, reverse osmosis, carbon filters, UV filters, activated carbon

PFAS in Drinking Water

Posted by Anthony DeLoach, President on May 4, 2022 1:05:00 PM

If you’ve been following the news, you know that there’s a growing problem with PFAS (per- and polyfluoroalkyl substances).

 

These man-made chemicals are found in everything from clothing to food packaging. While they are inexpensive and stable in products, some of these substances tend to break down into other substances, such as PFAS-methyl tetrahydrofuran. PFASs have been discovered in drinking water across the country, including in parts of the country with very high water tables. As a result, it’s important to learn how to remove contaminants from your drinking water. What should you do if you suspect that there’s a problem with your water? Check the source of the water, test it, and treat it if necessary.

Follow these steps to remove contaminants from your drinking water.

Test Your Water

Although it’s important to know how to remove contaminants in general, it’s even more important to know how to test your water for contamination. A water test kit can help you determine whether there are contaminants in your water and whether they are at a dangerous level. You can purchase water test kits at most grocery stores, hardware stores, and online retailers. Generally, these kits come with the standard set of tests for a home water filtration system, but they also often include tests for certain contaminants. Use these tests to determine whether your water is safe to drink or not. If your water contains contaminants, you need to remove them from your water source. This can be done by digging a deeper well, installing a water filtration system, or getting a water purification system. If your water does not contain contaminants, you don’t need to do anything except continue drinking your water.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, Chemical Odor, Safe drinking water, RO system, filters, Filter Media, residential well water systems, DeLoach Industries, Inc., backwash, Carbon Filter, Micron Filter, Drinking Water, Clean Water, Contaminated Water, Water Source, Sediment Filter, PFA's, Water Test, Water Test Kit

Flow Measurement in Water Systems

Posted by Matthew C. Mossman P.E. on Sep 28, 2021 11:45:00 AM

In water treatment systems it is often important to measure the rate at which water is flowing through the system. Data from flow measurement devices can be used to control chemical dosing, set pump speeds, control filter loading rates, inform maintenance programs, and other tasks necessary for operation of a water treatment facility or on key components such as Degasification and Decarbonation systems or Biological Odor Control Systems. As with most types of instrumentation, there is an array of technologies that can be used for the task, each one with various strengths and optimal applications. For modern electronically controlled systems, the most common types of flow sensors used are axial turbine flowmeters, paddlewheel flowmeters, differential pressure / orifice plate flow transducers, and magnetic flowmeters. This article will briefly discuss the technology and features of each of these types.

A turbine flow meter,

consists of a tube that contains supports to hold a multi-bladed metal turbine in the center. The turbine is designed to have close clearance to the walls of the tubing such that nearly all of the water is made to flow through the turbine blades as it travels through the pipe. The turbine is supported on finely finished bearings so that the turbine will spin freely even under very low flows. As the turbine spins, a magnetic pickup located outside of the flowmeter housing is used to sense the tips of the turbine blade spinning past the pickup. An amplifier/transmitter is then used to amplify the pulses and either transmit them directly or convert the pulse frequency into an analog signal that is then sent to a programmable controller for further use elsewhere in the system. One advantage of a turbine flowmeter is that the electronics are separated from the fluid path. The magnetic pickup is the only electronic component, and it is installed outside of the turbine housing, reading the presence of the turbine blade tips through the wall of the sensor body. In clean water applications, this can be advantageous because the magnetic pickup can be replaced if needed without removing the turbine from service. However, the turbine itself covers most of the pipe area and creates back-pressure in the system, requiring increased pumping energy to move a given amount of water. In Industrial Water Treatment or Filtration Treatment,  turbines can also easily become fouled or jammed if they are used to measure water or other fluids with entrained solids, algae or bacteria cultures which cause significant accumulation, or corrosive chemical components that can degrade the turbine bearings.

Read More

Topics: water quality, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, pumps, Alkalinity, Safe drinking water, wastewater, Recycling, pharmaceutical water, Aqua Farming, Aquaculture, Pipe Size, municipal water systems, industrial facilities, DeLoach Industries, Inc., actuated valves, pump controls, Drinking Water, Clean Water, Water Test, Water Test Kit, DeLoach Industries, civil engineers

Safety Precautions When Entering A Water Treatment Tower Or Tank

Posted by Anthony DeLoach, President on Sep 20, 2017 2:36:58 PM

Water treatment towers and storage tanks are high places that require special precautions when entering. While the majority of people who enter these locations for work can be trusted, there are some hazards that make it more important than usual to follow safety procedures.

These locations can get very hot and humid, and can also be filled with harmful chemicals and microorganisms that can cause serious health issues if inhaled or absorbed through the skin. Therefore, the general standard for workplace safety is much higher when entering locations like these.

Make sure you have read and understood the following information about safety when entering a water treatment plant. It will help you understand how to stay safe and protect yourself from harm when entering a water treatment plant. normal installation, maintenance, or even emergency repairs, it is often required to enter into a water treatment tower (degasifier, air stripper, decarbonator, or clear well/ storage tank). When this occurs, full safety protocols should be followed at all times, in accordance with OSHA regulations.  A tower or tank B classification is a "Confined Space" location. For more information visit the OSHA combined space regulations page.

In addition, there are other safety risks that an operator or technician can be exposed to while inside these types of closed locations. The risk can come from fumes of hydrogen sulfide (H2S), chlorine from an injection line, or a lack of oxygen O2. A proper confined space permit should be prepared and only technicians with proper training and certifications should enter into these types of confined spaces.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, safety, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, media packing, scaling, caustic, Safe drinking water, dissolved gases, wastewater, carbon dioxide, degasifier, gases, Ammonia, what is a scrubber, Hydrogen Sulfide formula, Deagasification, Filter Media, DeLoach Industries, Inc., Drinking Water, Clean Water, Contaminated Water, OSHA

What Makes DeLoach Industries Unique?

Posted by Anthony DeLoach, President on Jul 20, 2017 3:43:33 PM

DeLoach Industries Inc. has been serving the municipal, industrial, and food and beverage industries since 1959.

DeLoach Industries specializes in the design, manufacturing, operations & maintenance of water treatment, wastewater treatment, odor control, and pisciculture/aqua farming systems.

What makes DeLoach Industries Inc. unique is that, as an original equipment manufacturer, we have extensive knowledge and we understand how to engineer, design and manufacture the equipment you need. We are different from traditional fabrication shops in that they will typically build something specific to your drawing but if there is a problem they may not understand the process involved or even how to correct the problem.

We serve each customer on a project by project basis to fully understand your needs. We offer full in house engineering and CAD design support services, manufacturing services including operation & maintenance support, and field services including annual service contracts on all DeLoach and other brand water treatment equipment.

 

Read More

Topics: water treatment issues, water quality, pH levels of water, aeration, water treatment, advanced treatment solutions, fiberglass, About DeLoach Industries, fabrication, biological scrubber, Chemical Odor, media packing, pH levels, Decarbonation, De-Aeration, decarbonator, boiler system, distillation, degasifier, RO system, H2S Degasifier, Fish Farming, Aquaculture, Pisciculture, Biological Odor Control Scrubber, Biological odor control, removal of CO2 from water, Deagasification, decarbonation of water, Sand filters, Filter Media, municipal water systems, greensand, DeLoach Industries, Inc., Drinking Water

Subscribe to our blog

Recent Posts