.header-container, .body-container, .footer-container { max-width: 1080px; margin: 0 auto;

DELOACH BLOG

Forced Draft Degasification

Posted by Anthony DeLoach, President on Oct 23, 2018 7:49:53 AM

In the production and purification of water for industry

there are many types of different processes available to remove harmful minerals and gases from the water stream but the most effective process and most cost-effective from both a capital investment and operational cost is a “Forced Draft Degasification System” (Degasifier).

Degasification is used in a wide range of water processes for industrial and municipal applications which extend from the production of chemicals to the production of semiconductors and in all applications the need to remove contaminants from the water and dissolved gases is key to achieving the end results needed in the industrial water process. Water from the ground often contains elements such as calcium carbonate, manganese, iron, salts, hydrogen sulfide, and sulfur just to name a few of the basic contaminants and these naturally occurring elements can cause serious damage and consequences to process equipment such as boiler systems, piping, membranes, and cation and anion exchange resins used in the demineralization process.

Calcium carbonate can dissolve in water under certain pH ranges forming carbonic acid and releasing carbon dioxide (CO2) gases. These gases are not only very corrosive to equipment like boiler feed systems and boiler tubes but also attack the actual resin beds found in cation and anion softening and demineralization system causing an increase in regeneration and chemical consumption and resin bed replacement.

By incorporating a Force Draft Degasification system you can remove dissolved gasses

like CO2 and hydrogen sulfide (H2S) to as low as 99.999% and improve the cation and anion system performance, extend the resin bed life, and lower the operating cost of the water treatment process.

Quite often Forced Draft Degasification is utilized “post” treatment to also remove newly formed dissolved gases prior to entering the boiler feed system to prevent corrosion damage within the tubes and feed system and pumps. These gases are easily removed with the forced draft degasifier at a much lower cost than chemical additives or liquid cell degasification that requires higher capital cost and much higher operating cost.

Read More

Topics: water treatment issues, degasification, pH levels of water, iron oxidation, water treatment, water distribution system, aluminum, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Langilier index (LSI), Decarbonation, ION Exchange Resin, dissolved gases, feed water, De-Aeration, wastewater, carbon dioxide, decarbonator, degasifier, carbonic acid, H2S Degasifier

Industrial Boiler Feed Water Treatment: Quality and Efficiency

Posted by Anthony DeLoach, President on Jul 31, 2018 10:01:00 AM

In the United States manufacturing industry, an astonishing 400 million gallons of water per day (MGD) is consumed to generate steam.

Out of this amount, approximately 60 MGD is sent to blow-down drains, while another 300 MGD is used for direct injection of steam. The common denominator in all of these processes is the need for purified and treated water. Without proper treatment, manufacturers would face frequent shutdowns and increased capital expenditure, significantly impacting their cost of goods. One effective method of water treatment to protect boilers is through degasification and deaeration.

Degasification towers play a crucial role in removing harmful gases such as hydrogen sulfide (H2S), carbon dioxide (CO2), and often dissolved oxygen (DO). The elimination of these corrosive gases is vital for enhancing the lifespan and efficiency of boiler systems. If these gases are allowed to remain in the boiler feed water, particularly carbon dioxide (CO2), it can lead to disastrous consequences, including higher operating costs and reduced system longevity. Carbon dioxide (CO2) can convert into carbonic acid, creating a corrosive environment for the boiler and other critical components. In cases where an ion exchange process is implemented prior to the boiler, the presence of carbon dioxide (CO2) can drastically increase regeneration costs as the resins are consumed. By removing carbon dioxide (CO2), the life of the resin is extended, and the pH of the water is elevated, reducing the need for additional chemicals and further lowering operating costs.

Read More

Topics: water treatment issues, degasification, iron oxidation, water treatment, water distribution system, advanced treatment solutions, water plant, hydrogen sulfide (H2S), Decarbonation, ION Exchange Resin, feed water, De-Aeration, steam generation, steam generating boilers, carbon dioxide, steam, decarbonator, boiler system, degasifier, gases, RO membrane, carbonic acid, RO system, H2S Degasifier, Boiler feed water

Scrubber Pack Media

Posted by Anthony DeLoach, President on Jul 19, 2018 3:53:58 PM

Many types of water treatment systems depend on some type of media to provide the best performance required as it relates to water treatment and waste water treatment. For use in reverse osmosis there is a reliance on membranes which act as filters to separate the solids from the water. For ion exchange there are “resins” whether AION or CATION the resins works to treat hard and corrosive water. Degasification and decarbonation towers both require an internal media and sometimes this is referred to as “Random Packing” or “Loose Fill Media” and in this process the media acts like a traffic cop directing traffic.

In this case it directs the water on its way down and through a towers internals where it is constantly reshaping the water droplets over and over again forcing gas molecules to come to the surface edge of the water where they are removed. Carbon filters also require a media which is of course “Carbon”. The carbon media acts like a sponge absorbing the contaminants that you wish to remove from the water until it is saturated and must be replaced or regenerated. Even sand filters or pressure filters require a media.

Read More

Topics: degasification, water treatment, water plant, media packing, Decarbonation, ION Exchange Resin, feed water, wastewater, decarbonator, gases, RO membrane

Protect Your Boiler Deaerator: Importance of Deaeration

Posted by Anthony DeLoach, President on May 31, 2018 12:00:00 AM

 

The operation of steam-generating boilers and the process of removing dissolved gases from the feed water is of utmost importance.

Deaeration is essential in the boiler system process.

Deaeration involves removing oxygen (O2) and carbon dioxide (CO2) from the water. Removing oxygen and carbon dioxide from the water before it enters the boiler system is essential. This prevents corrosion of the boiler system components and reduces costly maintenance and repairs to your system.

Oxygen and carbon dioxide can corrode and destroy metal components of the boiler system.

Corrosion can be costly to repair or replace. This is due to oxygen (O2) and carbon dioxide (CO2) not being removed from the water.

In order to avoid unwanted corrosion, it is necessary to treat the water before it enters the boiler system. This can be achieved through different techniques, including deaeration, chemical treatment, or mechanical filtration.

The deaeration process typically requires a deaerator. This device combines heat and vacuum to remove dissolved gases from water. The deaerator reduces the amount of dissolved solids in the water.This can improve the efficiency of the boiler system. Neglecting regular maintenance and inspection of the boiler can lead to severe corrosion damage and operational issues.

Read More

Topics: Decarbonation, dissolved gases, feed water, De-Aeration, steam generating boilers, carbon dioxide, oxygen, steam, decarbonator, boiler system

Subscribe to our blog

Recent Posts