.header-container, .body-container, .footer-container { max-width: 1080px; margin: 0 auto;

DELOACH BLOG

Industrial Boiler Feed Water Treatment: Quality and Efficiency

Posted by Anthony DeLoach, President on Jul 31, 2018 10:01:00 AM

In the United States manufacturing industry, an astonishing 400 million gallons of water per day (MGD) is consumed to generate steam.

Out of this amount, approximately 60 MGD is sent to blow-down drains, while another 300 MGD is used for direct injection of steam. The common denominator in all of these processes is the need for purified and treated water. Without proper treatment, manufacturers would face frequent shutdowns and increased capital expenditure, significantly impacting their cost of goods. One effective method of water treatment to protect boilers is through degasification and deaeration.

Degasification towers play a crucial role in removing harmful gases such as hydrogen sulfide (H2S), carbon dioxide (CO2), and often dissolved oxygen (DO). The elimination of these corrosive gases is vital for enhancing the lifespan and efficiency of boiler systems. If these gases are allowed to remain in the boiler feed water, particularly carbon dioxide (CO2), it can lead to disastrous consequences, including higher operating costs and reduced system longevity. Carbon dioxide (CO2) can convert into carbonic acid, creating a corrosive environment for the boiler and other critical components. In cases where an ion exchange process is implemented prior to the boiler, the presence of carbon dioxide (CO2) can drastically increase regeneration costs as the resins are consumed. By removing carbon dioxide (CO2), the life of the resin is extended, and the pH of the water is elevated, reducing the need for additional chemicals and further lowering operating costs.

Read More

Topics: water treatment issues, degasification, iron oxidation, water treatment, water distribution system, advanced treatment solutions, water plant, hydrogen sulfide (H2S), Decarbonation, ION Exchange Resin, feed water, De-Aeration, steam generation, steam generating boilers, carbon dioxide, steam, decarbonator, boiler system, degasifier, gases, RO membrane, carbonic acid, RO system, H2S Degasifier, Boiler feed water

Cogeneration Systems for Water Treatment

Posted by Anthony DeLoach, President on Jul 10, 2018 8:50:00 AM

One of the largest consumers of energy in the US is water and wastewater treatment plants.

Because of the need for large horsepower pumps and blowers, a municipal water and wastewater treatment plant consumes a tremendous amount of kilowatt hours of electricity. The energy cost is factored into the “cost of production” of water or wastewater treatment, and the “rate base” charge is increased accordingly to the consumer.

Does Renewable Power Work in a Water Treatment Plant?

Because solar energy is “space intensive,” you do not see a lot of solar power being deployed across the USA at water treatment plants. In our opinion, this is a mistake, and most likely, the decision was made back when solar power output was much lower. With the increased efficiency of solar panels and decreased production cost, it makes tremendous sense to revisit the use of Solar energy to offset the operational cost of a water treatment plant or wastewater treatment plant operation.

Providing solar energy for specific pieces of process equipment is also a viable option when you consider deploying solar energy. For example, operating a Degasification tower or Decarbonator utilizing 10 350-watt solar panels will generate 3500 watts during peak daylight hours and enough to offset the cost of smaller horsepower blower motors. If the solar panels are configured as a canopy, they can also provide a nice shade or protective barrier above the piece of equipment if installed outdoors, as most packed column towers are located outside.

What about other forms of renewable energy? Do they work?

At water treatment or wastewater treatment facilities. Co-generation use has been around for many years at Wastewater plant facilities wastewater treatment plants. A cogeneration unit is a combination “Generator” to produce power and a “Thermal” energy source to produce heated water. The water can be used domestically or can be used to produce chilled water with the help of a Chiller system. The wastewater treatment plant provides a critical component by producing gases such as “Methane,” which can be used as a cogeneration unit fuel source. Water treatment plants do not produce methane or other combustible forms of gases like a cogeneration plant would produce, so you normally do not see Cogeneration system units deployed at a Water treatment facility.

Read More

Topics: degasification, water treatment, water distribution system, advanced treatment solutions, water plant, Decarbonation, wastewater, Recycling, Global, steam generation, steam

Steam Process Water Systems

Posted by Anthony DeLoach, President on Jun 26, 2018 8:06:00 AM

Optimizing Steam Process Water Systems with Degasification Towers

Steam process water systems are integral to various industrial operations, where water is heated and converted into steam. However, ensuring the efficiency and longevity of these systems requires a comprehensive understanding of water chemistry and the implementation of proper treatment methods. In particular, the removal of dissolved gases, such as hydrogen sulfide (H2S), carbon dioxide (CO2), and dissolved oxygen (O2), is crucial. This blog post will delve into the significance of degasification towers in steam process water systems, emphasizing their role in preventing corrosion, enhancing equipment performance, and maintaining water quality in your water and wastewater systems.

The Importance of Removing Dissolved Gases

Dissolved gases in steam process water systems can have detrimental effects on boilers and other critical components. Allowing gases like carbon dioxide (CO2) to remain in the water leads to the formation of carbonic acid, creating a corrosive environment. This corrosion can damage the boiler and reduce its lifespan. Additionally, dissolved gases can impair the efficiency of the system, affecting heat transfer and leading to reduced performance.

Read More

Topics: De-Aeration, carbon dioxide, oxygen, steam, decarbonator, degasifier, carbonic acid

Deaeration Vs. Decarbonation

Posted by Anthony DeLoach, President on Jun 14, 2018 8:00:00 AM

Understanding De-Aeration and Decarbonation in Water Treatment Systems

De-Aeration and decarbonation are two essential processes used to remove carbon dioxide (CO2) and dissolved oxygen (O2) from water streams, particularly in boiler-feed water systems. While both processes share the goal of eliminating CO2, they differ in their approach to removing oxygen. A De-Aeration system focuses on removing both CO2 and O2, while a decarbonation system primarily targets the removal of CO2. Let's delve deeper into these processes to understand their mechanisms and benefits.

In a De-Aeration system, steam is introduced at the bottom of the tower. The inlet feed water is heated to near saturation temperature, minimizing pressure drop and venting limits. This ensures optimal thermal operating efficiency of the tower. The steam acts as a carrier gas, stripping both CO2 and O2 from the water as it rises through the tower. The tower is equipped with an internal distribution system and media packing to enhance the removal of dissolved gases. By the time the water reaches the top of the tower, it has undergone significant de-aeration, resulting in reduced CO2 and O2 levels. This purified water is then ready for entry into the boiler, ensuring efficient and reliable steam generation.

Read More

Topics: media packing, Decarbonation, De-Aeration, carbon dioxide, oxygen, steam, decarbonator

Saving Steam With Degasification

Posted by Anthony DeLoach, President on Jun 5, 2018 12:00:00 AM

Saving Steam with Degasification: Optimizing Water Treatment for Cost Efficiency and Enhanced Performance.

Read More

Topics: degasification, Decarbonation, steam generation, carbon dioxide, steam, decarbonator, distillation

Protect Your Boiler Deaerator: Importance of Deaeration

Posted by Anthony DeLoach, President on May 31, 2018 12:00:00 AM

 

The operation of steam-generating boilers and the process of removing dissolved gases from the feed water is of utmost importance.

Deaeration is essential in the boiler system process.

Deaeration involves removing oxygen (O2) and carbon dioxide (CO2) from the water. Removing oxygen and carbon dioxide from the water before it enters the boiler system is essential. This prevents corrosion of the boiler system components and reduces costly maintenance and repairs to your system.

Oxygen and carbon dioxide can corrode and destroy metal components of the boiler system.

Corrosion can be costly to repair or replace. This is due to oxygen (O2) and carbon dioxide (CO2) not being removed from the water.

In order to avoid unwanted corrosion, it is necessary to treat the water before it enters the boiler system. This can be achieved through different techniques, including deaeration, chemical treatment, or mechanical filtration.

The deaeration process typically requires a deaerator. This device combines heat and vacuum to remove dissolved gases from water. The deaerator reduces the amount of dissolved solids in the water.This can improve the efficiency of the boiler system. Neglecting regular maintenance and inspection of the boiler can lead to severe corrosion damage and operational issues.

Read More

Topics: Decarbonation, dissolved gases, feed water, De-Aeration, steam generating boilers, carbon dioxide, oxygen, steam, decarbonator, boiler system

Subscribe to our blog

Recent Posts