DELOACH BLOG

Industrial Odor Control: The Do’s and Don’ts

Posted by Anthony DeLoach, President on Jul 26, 2018 8:32:00 AM

Avoid problems with calcium chlorite and corrosive gasses with your odor control scrubber.

When planning or designing an odor control system, one should pay close attention to several key variables that can cause havoc on a chemical odor control scrubber when trying to treat hydrogen sulfide or ammonia gases.   The need for odor control occurs in many different forms. It is essential to understand the process that is creating the odorous or corrosive gas and the need for odor control & air emissions treatment.

First, begin to identify

all the potential obstacles that may creep up later after the chemical odor or corrosive gas control system goes online, like acid or caustic consumption. For example, chemical odor control systems designed for water treatment for the municipal industry are typically needed and attached to a degasification or decarbonation process, often needed to treat hydrogen sulfide (H2S). However, designers often may not pay close enough attention to the type of water process available for “make-up” water for the chemical scrubber. The addition of caustic can create scaling or fouling. This unknown variable of the makeup water quality can lead to a complete tower shutdown if the chemical scrubber distribution and media bed scales or fouls. The most commonly used chemicals for a hydrogen sulfide (H2S) scrubber are either chlorine in the form of sodium hypochlorite or caustic in the form of caustic soda. Both of these chemicals are common to a water treatment facility and are already in place to adjust and control pH.

The makeup water plays a significant role in the operation of a chemical scrubber.

When water containing high hardness levels is used as the source for the makeup water, your chemical scrubber can become fouled, and scaling can occur in a matter of hours, depending on the alkalinity and salts within the water. Solidification can occur from the scaling when combining sodium hypochlorite and raw feed water at specific pH ranges and these ranges are usually the range needed to achieve peak performance. Calcium chloride will form, and your chemical odor control scrubber will become a solid chunk of calcium chlorite making, making the ability for water or air to pass freely through the media packing next to impossible. No matter what type of media packing is utilized in the odor control or gas scrubber, it can foul and scale if the water chemistry is incorrect.  Trust me when I say “been there and done that”!  I have seen operators who have allowed a chemical scrubber to become out of balance with pH control and completely solidify the tower column to the degree that neither air nor water passage is possible. The problem can still occur with ammonia scrubbers but are different with different sets of parameters.

Read More

Topics: odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Alkalinity, Langilier index (LSI), scaling, chlorine, caustic, ION Exchange Resin, Safe drinking water, dissolved gases, De-Aeration, carbon dioxide, oxygen, degasifier, gases, H2S Degasifier, calcium chlorite

The Basics of Water Degasification

Posted by Anthony DeLoach, President on Jul 24, 2018 9:13:00 AM

The water treatment industry has developed and evolved over the years to continue to find new ways to produce degassed water,

with many advances in both the technological methods of treatment as well as the refinement of the existing methods. The evolution of water treatment has been driven by the need for increased demand and over safety standards.

All human cultures on our planet share a 

single commonality and

that is the dependency on water to survive.

Many existing technologies such as “degasification” have evolved with higher efficiency to meet the demand changes and provide safety to consumers and to systems. Degasification refers to the removal of dissolved gases from liquids and the science to degasify water is based upon the “Henry’s Law” or to be exact the “proportionality factor is called the Henry’s law constant” and was developed by William Henry in the early 19th century.

Henry’s Law states that the amount of dissolved gas is proportional to its partial pressure in the gas. The most effective method to perform degasification is with the packed vertical tower called a degasifier or decarbonator. When water enters at the top of the tower it gravity feeds downward across a media bed. The media bed acts to reshape the water over and over again exposing any dissolved gas molecules to the surface of the water droplet.  At the same time that the water is traveling down the interior of the tower an air flow is introduced in a cross current method either by force or by induction that passes over the water droplets and “strips” the gas molecules out of the water. The gases that are stripped then leave the tower through the exhaust at the top of the tower. This is the “basics of water degasification”.

Read More

Topics: water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, water plant, safety, hydrogen sulfide (H2S), Chemical Odor, media packing, pH levels, Decarbonation, dissolved gases, wastewater, Global, carbon dioxide, decarbonator, degasifier, gases, RO membrane, H2S Degasifier, degassed water

How To Protect Your Pharmaceutical Water

Posted by Anthony DeLoach, President on Jun 12, 2018 12:00:00 AM

The need to remove dissolved gases from water in the pharmaceutical process is well known within the water treatment industry. However, the method of removing the gases varies and depending on the quality of the water a wrong selection can wreak havoc on your process water equipment, such as the steam boiler or distillation columns. If the water contains high levels of Carbon Dioxide (CO2) than it can form carbonic acid which will attack and corrode both the steam boiler tubes as well as the distillation columns. Removing the dissolved gases by adding a Degasification tower or “Degasifier” will ensure that the dissolved gases like Hydrogen sulfide (H2S) and Carbon Dioxide (CO2) have been removed to acceptable levels of below 7 ppb.  Also utilizing a degasification tower is the most cost-effective way to reduce and eliminate the gases in the water stream, R.O. membranes are used to and require pH adjustment to achieve the same results because of the need to convert the Carbon Dioxide (CO2) into carbonates first.

Read More

Topics: degasification, water treatment, hydrogen sulfide (H2S), dissolved gases, pharmaceutical water, carbon dioxide, degasifier, gases, RO membrane, carbonic acid, RO system

Dearation in Water

Posted by Anthony DeLoach, President on May 31, 2018 12:00:00 AM

Removing gases to protect your boiler

The process of removing dissolved gases from feed water to steam-generating boilers is often referred to as “Deaeration”. During the deaeration process dissolved oxygen (02) and carbon dioxide (CO2) are removed prior to entering the boiler. If the gases are not removed prior to reaching the boiler system, the boiler will experience serious corrosion damage. The gases, when in contact with the metallic equipment will form oxides (rust) and it will attach to the walls of the piping and tubes and over time completely shut down the boiler. The dissolved carbon dioxide combines with the water and forms carbonic acid that also further enhances the corrosion process.

Most deaerators utilize steam to enhance the removal of the dissolved gases and levels are typically reduced to 7 ppb by weight or less for the oxygen (02) and the removal of carbon dioxide (CO2). For a system only needing CO2 removal then a decarbonator is typically used as it operates without the need for steam and for much less operating cost. For more information or to learn more contact the professionals at DeLoach Industries Inc. at (941) 371-4995.

Read More

Topics: Decarbonation, dissolved gases, feed water, De-Aeration, steam generating boilers, carbon dioxide, oxygen, steam, decarbonator, boiler system

Safety Precautions When Entering A Water Treatment Tower Or Tank

Posted by Anthony DeLoach, President on Sep 20, 2017 2:36:58 PM

Water treatment towers and storage tanks are high places that require special precautions when entering. While the majority of people who enter these locations for work can be trusted, there are some hazards that make it more important than usual to follow safety procedures.

These locations can get very hot and humid, and can also be filled with harmful chemicals and microorganisms that can cause serious health issues if inhaled or absorbed through the skin. Therefore, the general standard for workplace safety is much higher when entering locations like these.

Make sure you have read and understood the following information about safety when entering a water treatment plant. It will help you understand how to stay safe and protect yourself from harm when entering a water treatment plant. normal installation, maintenance, or even emergency repairs, it is often required to enter into a water treatment tower (degasifier, air stripper, decarbonator, or clear well/ storage tank). When this occurs, full safety protocols should be followed at all times, in accordance with OSHA regulations.  A tower or tank B classification is a "Confined Space" location. For more information visit the OSHA combined space regulations page.

In addition, there are other safety risks that an operator or technician can be exposed to while inside these types of closed locations. The risk can come from fumes of hydrogen sulfide (H2S), chlorine from an injection line, or a lack of oxygen O2. A proper confined space permit should be prepared and only technicians with proper training and certifications should enter into these types of confined spaces.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, safety, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, media packing, scaling, caustic, Safe drinking water, dissolved gases, wastewater, carbon dioxide, degasifier, gases, Ammonia, what is a scrubber, Hydrogen Sulfide formula, Deagasification, Filter Media, DeLoach Industries, Inc., Drinking Water, Clean Water, Contaminated Water, OSHA

Subscribe to our blog

Recent Posts