DELOACH BLOG

Caustic Scrubber for Sodium Hydroxide

Posted by Anthony DeLoach, President on Aug 21, 2018 8:51:00 AM

Caustic solution for Sodium hydroxide water treatment

There are many industries that require the use of a caustic scrubber which is considered a chemical scrubber and they range from the municipal industry, mining, semiconductor markets, pulp and paper and chemical refining.  There is a wide variety of industrial processes that generate noxious or corrosive off gases that require treatment and a comparison is made about biological Vs. chemical.  Often biological scrubbers have limitations due to concentrations, composition, or temperature of the contaminants and if the gas stream contains acid fumes then a biological scrubber is quickly ruled out.

The odor control selection is often fraught with choices of capital cost over operational cost and quite often comes down to familiarity from the designer or purchaser.  It is always a good idea to freshen up on the industrial odor control the do’s and don’t’s before selecting the final solution.  If the off gas source that needs to be treated is hydrogen sulfide (H2S) or some other type of gas stream produced by an acid or ammonia it will often require neutralization for human health reasons and to protect equipment or may be required to meet regulatory compliance. Caustic scrubbers may be either vertical or horizontal by design, but both utilize a packed media bed of either random packing or trays to allow the gas fumes to meet the recirculating caustic solution which then forces the reaction to occur.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, pH levels, caustic, wastewater, carbon dioxide, degasifier, gases, caustic solution, sodium hydroxide water treatment

Using a Biological Scrubber to treat & remove contaminants

Posted by Anthony DeLoach, President on Aug 9, 2018 8:18:00 AM

A Biological Scrubber is a wet odor control scrubber that treats and removes contaminants from an air stream. It utilizes caustic typically to control the pH of the re-circulation solution. There are several types of odor control and chemical fume scrubbers on the market today. Each plays a role in treating noxious or corrosive gases in the industry.

Read More

Topics: water treatment issues, odor control, advanced treatment solutions, biological scrubber, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, dissolved gases, wastewater, carbon dioxide, degasifier, gases, RO system, H2S Degasifier, what is a scrubber

Ammonia Scrubber

Posted by Anthony DeLoach, President on Aug 2, 2018 9:00:00 AM

The type of Odor Control wet scrubber selected for the treatment and neutralization of Ammonia (NH3) gases depends on several variables, including the type and source of the ammonia gas and whether or not it is “Free” ammonia and or unionized. Ammonia is a very miscible and stable molecule with solid hydrogen bonds, making it very soluble in water and difficult to treat without using a properly designed and sized ammonia scrubber. The concentrations, air flow rates, temperature of the gas stream, and chemical reagents being utilized, such as caustic to remove and then treat the ammonia, all play a significant role in the efficiency of the ammonia scrubber system. Unlike other types of “odor control scrubbers,” an ammonia scrubber is much more sensitive to variables such as the gas stream temperature because of the solubility of ammonia.

  Ammonia is produced from nitrogen and hydrogen 

the process is called the Haber Process by combining nitrogen with air and adding pressure, you can make ammonia. It takes about 200 atmospheres of pressure, and the process varies from refinery to refinery. Still, on average, you can only make approximately 15% of ammonia during each pass which takes multiple passes to achieve the 15%. The reaction to make ammonia is exothermic when produced in a refining process. 

However, ammonia is also formed in nature in smaller quantities. Most ammonia (90%) is utilized for fertilizer production, but ammonia can be found in food, pharmaceutical products, and cleaning supplies. When ammonia gas is released into the air, it has a very noxious and pungent odor that can be dangerous to inhale, so often, odor control scrubbers are required to capture and treat the ammonia gas.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, pH levels, Decarbonation, dissolved gases, wastewater, degasifier, gases, H2S Degasifier, Ammonia

The Basics of Water Degasification

Posted by Anthony DeLoach, President on Jul 24, 2018 9:13:00 AM

The water treatment industry has developed and evolved over the years to continue to find new ways to produce degassed water,

with many advances in both the technological methods of treatment as well as the refinement of the existing methods. The evolution of water treatment has been driven by the need for increased demand and over safety standards.

All human cultures on our planet share a 

single commonality and

that is the dependency on water to survive.

Many existing technologies such as “degasification” have evolved with higher efficiency to meet the demand changes and provide safety to consumers and to systems. Degasification refers to the removal of dissolved gases from liquids and the science to degasify water is based upon the “Henry’s Law” or to be exact the “proportionality factor is called the Henry’s law constant” and was developed by William Henry in the early 19th century.

Henry’s Law states that the amount of dissolved gas is proportional to its partial pressure in the gas. The most effective method to perform degasification is with the packed vertical tower called a degasifier or decarbonator. When water enters at the top of the tower it gravity feeds downward across a media bed. The media bed acts to reshape the water over and over again exposing any dissolved gas molecules to the surface of the water droplet.  At the same time that the water is traveling down the interior of the tower an air flow is introduced in a cross current method either by force or by induction that passes over the water droplets and “strips” the gas molecules out of the water. The gases that are stripped then leave the tower through the exhaust at the top of the tower. This is the “basics of water degasification”.

Read More

Topics: water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, water plant, safety, hydrogen sulfide (H2S), Chemical Odor, media packing, pH levels, Decarbonation, dissolved gases, wastewater, Global, carbon dioxide, decarbonator, degasifier, gases, RO membrane, H2S Degasifier, degassed water

Scrubber Pack Media

Posted by Anthony DeLoach, President on Jul 19, 2018 3:53:58 PM
HubSpot Video

Many types of water treatment systems depend on some type of media to provide the best performance required as it relates to water treatment and waste water treatment. For use in reverse osmosis there is a reliance on membranes which act as filters to separate the solids from the water. For ion exchange there are “resins” whether AION or CATION the resins works to treat hard and corrosive water. Degasification and decarbonation towers both require an internal media and sometimes this is referred to as “Random Packing” or “Loose Fill Media” and in this process the media acts like a traffic cop directing traffic.

In this case it directs the water on its way down and through a towers internals where it is constantly reshaping the water droplets over and over again forcing gas molecules to come to the surface edge of the water where they are removed. Carbon filters also require a media which is of course “Carbon”. The carbon media acts like a sponge absorbing the contaminants that you wish to remove from the water until it is saturated and must be replaced or regenerated. Even sand filters or pressure filters require a media.

Read More

Topics: degasification, water treatment, water plant, media packing, Decarbonation, ION Exchange Resin, feed water, wastewater, decarbonator, gases, RO membrane

Renewable Energy for Water Treatment

Posted by Anthony DeLoach, President on Jul 10, 2018 8:50:00 AM

One of the largest consumers of energy in the US are the water and wastewater treatment plants.

Because of the need for large horsepower pumps and blowers a municipal water and wastewater treatment plant consumes a tremendous amount of kilowatt hours of electricity. The cost of the energy is factored into the “cost of production” of the treatment of water or wastewater and the “rate base” charge is increase accordingly to the consumer.

Does Renewable Power Work in a Water Treatment Plant?

Because solar energy is “space intensive” you do not see a lot of solar power being deployed across the USA at water treatment plants. This is in our opinion a mistake and most likely the decision was made back when solar power output was much lower. Now with increased efficiency of the solar panels and a decrease in production cost it makes tremendous sense to revisit the use of Solar energy for offsetting the operational cost of a water treatment plant or wastewater treatment plant operation.

Providing solar energy for specific pieces of process equipment is also a viable option when you consider deploying solar energy. As an example, to operate a Degasification tower or Decarbonator utilizing 10 350 watt solar panels will generate 3500 watts during peak day light hours and enough to offset the cost of smaller horsepower blower motors. If the solar panels are configured as a canopy they can also provide a nice shade or protection barrier above the piece of equipment if installed outdoors as most packed column towers are located outside.

What about other forms of renewable energy do they work?

At water treatment or wastewater treatment facilities? The use of Co-generation has been around for many years at Wastewater plant facilities waste water treatment plant. A cogeneration unit is a combination “Generator” to produce power and a “Thermal” energy source to produce heated water. The water can be used domestically or can be used to produce chilled water with the help of a Chiller system. The waste water treatment plant  provides a critical component by producing gases such as “Methane” which can be utilized as a fuel source for the cogeneration unit. Water treatment plants do not produce methane gases or other combustible forms of gases so you normally do not see Co-generation units deployed at a Water treatment facility.

Read More

Topics: degasification, water treatment, water distribution system, advanced treatment solutions, water plant, Decarbonation, wastewater, Recycling, Global, steam generation, steam

Recycling Wastewater For Safe Drinking Water

Posted by Anthony DeLoach, President on May 29, 2018 12:00:00 AM

Over the last 2 decades there has been vast development and improvement of wastewater technologies in regards to the water treatment processes that have been driven by both need and governmental regulations. Today, municipalities and Countries are recognizing the need to recycle wastewater into drinking water and in locations such as the Caribbean and other foreign nations the wastewater to drinking water industry is more of a “must” than a choice.

Read More

Topics: water quality, advanced treatment solutions, Safe drinking water, wastewater, Recycling, Caribbean, Global

Safety Precautions When Entering A Water Treatment Tower Or Tank

Posted by Anthony DeLoach, President on Sep 20, 2017 2:36:58 PM

Water treatment towers and storage tanks are high places that require special precautions when entering. While the majority of people who enter these locations for work can be trusted, there are some hazards that make it more important than usual to follow safety procedures.

These locations can get very hot and humid, and can also be filled with harmful chemicals and microorganisms that can cause serious health issues if inhaled or absorbed through the skin. Therefore, the general standard for workplace safety is much higher when entering locations like these.

Make sure you have read and understood the following information about safety when entering a water treatment plant. It will help you understand how to stay safe and protect yourself from harm when entering a water treatment plant. normal installation, maintenance, or even emergency repairs, it is often required to enter into a water treatment tower (degasifier, air stripper, decarbonator, or clear well/ storage tank). When this occurs, full safety protocols should be followed at all times, in accordance with OSHA regulations.  A tower or tank B classification is a "Confined Space" location. For more information visit the OSHA combined space regulations page.

In addition, there are other safety risks that an operator or technician can be exposed to while inside these types of closed locations. The risk can come from fumes of hydrogen sulfide (H2S), chlorine from an injection line, or a lack of oxygen O2. A proper confined space permit should be prepared and only technicians with proper training and certifications should enter into these types of confined spaces.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, safety, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, media packing, scaling, caustic, Safe drinking water, dissolved gases, wastewater, carbon dioxide, degasifier, gases, Ammonia, what is a scrubber, Hydrogen Sulfide formula, Deagasification, Filter Media, DeLoach Industries, Inc., Drinking Water, Clean Water, Contaminated Water, OSHA

How important are NSF/ANSI 61 standards

Posted by Anthony DeLoach, President on Jul 26, 2017 2:15:53 PM

Following NSF/ANSI 61 Regulations when designing and selecting the materials for the manufacturing of water treatment equipment,

it is important to understand what regulatory standards or constructions standard may be required to be compliant. This includes the designing and fabrication of systems such as reverse osmosis utilizing membrane technology, decarbonation of Carbon Dioxide, degasification of Hydrogen Sulfide, and water filtration for the removal of micron particles from potable and non potable water processes.

One requirement that engineers and manufactures often encounter is called NSF /ANSI 61. NSF is an international and non profit, non governmental organization that is focused and dedicated to public health and safety as it relates to potable water systems and their components. NSF/ANSI 61 developed and established minimum requirements for the control of potential adverse human health effects from products and their components that contact drinking water.

DeLoach Industries Inc. manufactures multiple types of water treatment equipment and adheres to strict compliance with NSF/ANSI 61 standards with all of their manufacturing procedures and practices. This strict adherence assures owners that water treatment equipment like decarbonation and degasification towers, reverse osmosis and ion exchange that the equipment and its material are all in full compliance with the NSF/ANSI 61 requirements.

When manufacturing water treatment products from fiberglass material DeLoach Industries utilizes NSF/ANSI 61 resins within the fabricating process. This applies when utilizing either contact molded, or filament wound processes. In both applications when fiberglass resin is utilized with the entire component is manufactured with certified NSF/ANSI 61 resins or there is a suitable veil liner placed on the equipment or component that is in direct contact with the water. This variation is acceptable and often utilized to help reduce the cost of fabrication and the equipment for the customer.

When treating water to remove Hydrogen Sulfide or Carbon Dioxide the water comes into direct contact with the interior walls of either a decarbonation tower or a degasification tower. Both systems require the water to enter the tower and be directly exposed to either the fiberglass. Stainless steel, or carbon steel material. If the material of construction is not fiberglass then typically another type of NSF/ANSI 61 compliant liner will be utilized such as a rubber, polyuria, or epoxy material. For more information about following NSF/ANSI 61 requirements visit the DeLoach Industries website at www.DeLoachIndustries.com.

Read More

Topics: water quality, water treatment, advanced treatment solutions, About DeLoach Industries, fabrication, contact molded process, hydrogen sulfide (H2S), Decarbonation, wastewater, carbon dioxide, decarbonator, H2S Degasifier, ansi61, nsf/ansi61

Utilizing Decarbonation to Lower CO2 Levels & Raise pH

Posted by Anthony DeLoach, President on May 18, 2017 1:05:24 PM

CO2 & ph In municipal and industrial water processes

Carbon Dioxide (CO2) in municipal and Industrial water can create problems in the treatment process, increase operational costs of the treatment plant, and cause excessive corrosion to equipment and ancillary equipment.

In nature, one of the most natural common causes that creates low pH or acidity in water is an element known as “Carbon Dioxide” (CO2).  The process of how carbon dioxide enters the water in the first place is a topic worth exploring.  Nature creates one of the most common causes of CO2 found in the water naturally. When water reaches an equilibrium with our atmosphere followed by the biological degradation that is aided by photosynthesis of organic carbon (CH2O) then carbon dioxide begins to form. Organic carbon is dissolved in water and it forms “Carbonic Acid”

(H2CO3).  CO2 (g) + H2(l) = H2CO3 (aq). 

The process to form the carbonic acid is slow and only a small portion remains as an acid because proton losses occur during the process.

H2CO3 (aq) « H+ (aq) + HCO3- (aq)

CO3- (aq) « H+ (aq) + CO32- (aq)

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, water plant, pH levels, caustic, Decarbonation, wastewater, carbon dioxide, decarbonator, gases, carbonic acid, H2S Degasifier, Co2 ph

Subscribe to our blog

Recent Posts