.header-container, .body-container, .footer-container { max-width: 1080px; margin: 0 auto;

DELOACH BLOG

Water with Artificial Intelligence

Posted by Anthony DeLoach, President on Jul 12, 2018 9:08:00 AM

Ten years ago if I had purposed that one day our water would have artificial intelligence I think I would have been laughed out of the industry. But now, anything you can imagine with the new electronic revolution is possible because of the current revolution referred to as “The Internet of Things” (IoT). Placing nano-size SIP (Systems in a package) into a water stream and tracking its path or location or performing inspections on critical infrastructure or equipment is now a reality.

Read More

Topics: degasification, water treatment, advanced treatment solutions, water plant, phosphate levels, pH levels, Alkalinity, Global, decarbonator, degasifier

Cogeneration Systems for Water Treatment

Posted by Anthony DeLoach, President on Jul 10, 2018 8:50:00 AM

One of the largest consumers of energy in the US is water and wastewater treatment plants.

Because of the need for large horsepower pumps and blowers, a municipal water and wastewater treatment plant consumes a tremendous amount of kilowatt hours of electricity. The energy cost is factored into the “cost of production” of water or wastewater treatment, and the “rate base” charge is increased accordingly to the consumer.

Does Renewable Power Work in a Water Treatment Plant?

Because solar energy is “space intensive,” you do not see a lot of solar power being deployed across the USA at water treatment plants. In our opinion, this is a mistake, and most likely, the decision was made back when solar power output was much lower. With the increased efficiency of solar panels and decreased production cost, it makes tremendous sense to revisit the use of Solar energy to offset the operational cost of a water treatment plant or wastewater treatment plant operation.

Providing solar energy for specific pieces of process equipment is also a viable option when you consider deploying solar energy. For example, operating a Degasification tower or Decarbonator utilizing 10 350-watt solar panels will generate 3500 watts during peak daylight hours and enough to offset the cost of smaller horsepower blower motors. If the solar panels are configured as a canopy, they can also provide a nice shade or protective barrier above the piece of equipment if installed outdoors, as most packed column towers are located outside.

What about other forms of renewable energy? Do they work?

At water treatment or wastewater treatment facilities. Co-generation use has been around for many years at Wastewater plant facilities wastewater treatment plants. A cogeneration unit is a combination “Generator” to produce power and a “Thermal” energy source to produce heated water. The water can be used domestically or can be used to produce chilled water with the help of a Chiller system. The wastewater treatment plant provides a critical component by producing gases such as “Methane,” which can be used as a cogeneration unit fuel source. Water treatment plants do not produce methane or other combustible forms of gases like a cogeneration plant would produce, so you normally do not see Cogeneration system units deployed at a Water treatment facility.

Read More

Topics: degasification, water treatment, water distribution system, advanced treatment solutions, water plant, Decarbonation, wastewater, Recycling, Global, steam generation, steam

Biological Odor Control Vs Chemical Scrubber

Posted by Anthony DeLoach, President on Jul 5, 2018 9:20:02 AM

What is the best process for hydrogen sulfide treatment? Biological odor control Scrubber or a Chemical Scrubber?

Most industrial water treatment, municipalities, and private customers are responsible for water and wastewater treatment and often generate "hydrogen sulfide" off-gas odors. Professionals who either provide the design engineering or maintain the water or wastewater collection systems need to address and control "hydrogen sulfide" odors. They often find themselves in a situation where they must select what type of odor control system will perform for their customer or at their location. A chemical odor control scrubber may utilize "chlorine" or "caustic" as a scrubbing agent or just "caustic" alone. Typically, "acids" are not used when treating "hydrogen sulfide" gas, but "acid. " Acid is used when treating other types of off-gases such as ammonia. The application or process, including incorporating "artificial intelligence" into the machinery to provide more rapid responses to operators to predict maintenance and other operational functions—treating process air generated by either a "decarbonation" tower or a "degasification" tower for the removal of "carbon dioxide (CO2) or "hydrogen sulfide (H2S). It is important to understand the basics of either of the processes to allow the design professional to properly select the best type of "odor control" scrubber to utilize and make the decision to either select a chemical scrubber that uses "caustic" or "chlorine" or a biological scrubber for the treatment of the hydrogen sulfide that only requires the use of "caustic" to buffer the recirculation water. In other types of processes involving treatment, such as ion exchange, a design professional or owner must understand that the process may also produce an off-gas that requires treatment. "Ion exchange" can be used as a standalone treatment process to treat hard water utilized as a post-treatment process after reverse osmosis. Regardless of when "ion exchange" is utilized, we recommend removing the carbon dioxide (CO2) before the process to prevent the formation of carbonic "acid" and to extend and save the life of the Ion Exchange resin. It may also be necessary to adjust the pH of the water either pre or post-treatment by injecting either an "acid" solution when lowering the pH or injecting a "caustic" solution when raising the ph. It is important to remember that the efficiency of the process depends on proper pH control.

High pH and hydrogen sulfide will not convert or be removed by “degasification” and the “carbon dioxide” cannot be removed.

Read More

Topics: odor control, water treatment, advanced treatment solutions, odor control scrubber, Chemical Odor, gases, Biological Odor Control Scrubber, Biological odor control

How Decarbonation Works

Posted by Anthony DeLoach, President on Jul 3, 2018 1:01:10 PM

The removal of carbon dioxide from water,

is a term called “decarbonation” and it relates to the process of stripping and removing Carbon Dioxide (CO2) from water.  You will hear the term decarbonation used quite often in industrial water treatment and in high-purity water treatment.  Carbon dioxide along with other elements like nitrogen and oxygen is also removed during the decarbonation process.  Most gas air stripping such as decarbonation is based upon “Henry’s Law” but the removal of carbon dioxide is an exception to Henry’s Law because when water contains carbon dioxide it forms carbonic acid which can ionize into hydrogen and bicarbonate ions. 

Bicarbonate ions are not bound by the rules of Henry’s Law and therefore the bicarbonate ions when formed are only slightly removed through the aeration or decarbonation process. The Carbon dioxide that remains in the water that does not form into bicarbonate can be removed by the decarbonation or aeration process.  This type of carbon dioxide is called “uncombined” CO2.

Read More

Choosing The Correct Type Of Odor Control Scrubber

Posted by Anthony DeLoach, President on Jul 2, 2018 6:16:19 PM

Opting for the appropriate odor control scrubber can lead to significant cost savings!

We have discussed the importance of understanding the source and concentration of an odor issue before selecting the type of treatment or odor control system. In addition to these critical items is the consideration of operating costs.

Many types of odor control systems work and remove odors, but selecting and designing a system that works efficiently and effectively without breaking the bank can be challenging.

For a design professional and the system supplier, it is essential to consider what an owner, and their operators, will face to maintain the odor control system.

For example, carbon absorption has been around for many years and is a very effective method for removing noxious odors from an air stream. However, the use of carbon in municipal operations is seldom seen these days due to the extreme cost of disposal or on-site regeneration of the carbon once it has been spent. The same can be said about other odor control processes that utilize chemicals, such as potassium permanganate.

Read More

Topics: water quality, odor control, water treatment, biological scrubber, water plant, odor control scrubber

Servicing your Degasification Tower or Decarbonator for Co2 Removal

Posted by Anthony DeLoach, President on Jun 28, 2018 8:15:00 AM

When do you know if your decarbonation system needs service?

When a degasification tower or decarbonator becomes fouled, several indicators identify you may have a problem or that it's time to clean your system. If the efficiency of the degasifier has dropped, you will see an increased consumption rate of chemicals. If you remove less hydrogen sulfide gas from the degasifier, chlorine consumption will increase. When you increase the amount of chemical reaction occurring in the water, you will see an increase in the TSS levels and a drop in water quality. As the H2S reacts with chlorine, more solids will form and be present in the water, and the water quality will diminish.

Another indicator of a fouling condition is the pH adjustment in the Industrial Water Treatment industry. You are required to meet the set standards. As the performance of the tower drops, the removal of CO2 will also drop, leaving a higher pH level than may be desired. A quick inspection to check out the media bed should be performed. Also, do not forget to inspect the distribution system at the top of your tower and remember that all distribution systems are not alike, and inspecting the condition of each of them may require additional effort on your part. With a header lateral system, you need to inspect the distribution nozzles, but with a Weir or Tray type, you will need to check the amount of scale or fouling building up on the Weir edge or in the bottom of the pan. If the Weir edge becomes fouled unevenly, it will create "Channeling" of the water and increase the initial hydraulic load to a concentrated point on the media bed.

Read More

Topics: water treatment issues, blower maintenance, aeration, water treatment, advanced treatment solutions, degasifier, Deagasification, decarbonation of water

Steam Process Water Systems

Posted by Anthony DeLoach, President on Jun 26, 2018 8:06:00 AM

Optimizing Steam Process Water Systems with Degasification Towers

Steam process water systems are integral to various industrial operations, where water is heated and converted into steam. However, ensuring the efficiency and longevity of these systems requires a comprehensive understanding of water chemistry and the implementation of proper treatment methods. In particular, the removal of dissolved gases, such as hydrogen sulfide (H2S), carbon dioxide (CO2), and dissolved oxygen (O2), is crucial. This blog post will delve into the significance of degasification towers in steam process water systems, emphasizing their role in preventing corrosion, enhancing equipment performance, and maintaining water quality in your water and wastewater systems.

The Importance of Removing Dissolved Gases

Dissolved gases in steam process water systems can have detrimental effects on boilers and other critical components. Allowing gases like carbon dioxide (CO2) to remain in the water leads to the formation of carbonic acid, creating a corrosive environment. This corrosion can damage the boiler and reduce its lifespan. Additionally, dissolved gases can impair the efficiency of the system, affecting heat transfer and leading to reduced performance.

Read More

Topics: De-Aeration, carbon dioxide, oxygen, steam, decarbonator, degasifier, carbonic acid

Are All Distribution Systems Equal?

Posted by Anthony DeLoach, President on Jun 21, 2018 8:01:00 AM

Do you think all distribution systems are made equal? 

if you do you may be surprised that there is a lot of variation in manufacturing protocols for aerators, degasifiers, and decarbonators.  Aerators are often found in use at Industrial Water Treatment and municipal water treatment facilities around the globe. 

For water treatment, you may be surprised to learn that one of the key items that separate different types of aerators and decarbonators for water treatment is the type of distribution system it utilizes.  To improve Carbon Dioxide (CO2) or Hydrogen Sulfide (H2S) removal you need to select the best distribution system for the tower and make sure it's maintained. Now, there are many types of aerators in general and the term is used broadly. From floating pond aerators to wastewater aerators, to vertical tower aerators, decarbonators, and degasifiers for industrial water treatment aerators.  We will focus on vertical tower aerators for industrial water treatment.  All types of Aerators and even degasifiers and even decarbonators and Odor Control Scrubbers require some type of distribution system to begin the process of gas transfer and to remove Hydrogen Sulfide (H2S) from water or Carbon Dioxide (CO2).  It is important to evenly distribute the water or chemical solution across the media bed. 

There are several types of distribution systems available and the three most common ones you will see on the marketplace are the “Tray” type, Weir, or the header lateral utilizing gas release “Nozzles”.  

The selection of what type of distribution system is typically driven by the marketing side of who is selling you the tower.  But in terms of real performance a distribution system utilizing a nozzle system will outperform a tray-type distributor.  All packed towers are designed utilizing Henry’s Law Constant” theory of chemistry and what all towers rely upon is some type of method to break the surface tension of the water and expose the molecules of gases so that they either can escape or can be introduced to a reaction agent.

When towers are designed it is important to properly hydraulically load the top of the media bed.  This is considered " Degasification Basics". This is important for many reasons and we will address these points in future updates.  When using a properly designed nozzle distribution system such as a DeLoach Industries header lateral system then you get the benefit of both proper hydraulic load across the bed and you also gain anywhere from 4-10% removal efficiency depending upon the application.  When looking at a chemical scrubber versus a biological scrubber you will notice they too have very different distribution systems. DeLoach Industries, Inc. has learned over its 60 years in business how to maximize gas transfer release.  If designed and built properly the gas release process or interaction process (if designing a scrubber) has already begun “before” it enters the media bed.

Read More

Topics: water treatment issues, aeration, Decarbonation, De-Aeration, decarbonator, degasifier

Understanding Ammonia Hazards in Water Treatment

Posted by Anthony DeLoach, President on Jun 19, 2018 8:05:00 AM

Ammonia (AM) is a common water pollutant that significantly impacts the water process industry.

It is not just polluting water bodies but also aqua wells and humidifiers. Generally, AM is produced from human sweat and urine and created from synthetic ammonia in industrial processes.

Ammonia has three types of amines – primary, secondary, and tertiary – all are toxic for humans and aquatic life.

  • Primary Amine has two carbon and one nitrogen atom, also called methylamine or CHNH2.
  • Secondary Amine has two nitrogen atoms with no carbon atom between them, also called Dimethylamine or CH2(NH)CH3.
  • Tertiary Amine has three nitrogen atoms with no carbon atoms between them; thus, it’s called Trimethylamine or CH3C(NH)CH3.

In natural conditions, primary Amide bacteria produce Amide under high-temperature conditions. In an aqueous solution and soil environments with high pH levels (>6).

Primary amide can form by the dehydrogenation of nitriles, such as acetonitrile, which are further oxidized to form acetic acid. 

Primary amide form by alkaline hydrolysis of nitro compounds such as 2-nitrophenol.

Process systems often need to recognize when the Degasification or Decarbonation system is failing or underperforming.

Read More

Topics: Decarbonation, decarbonator, degasifier, Amine, Ammonia, Deagasification, Filter Media, distribution system, blower motor, process system, frequent inspections

Deaeration Vs. Decarbonation

Posted by Anthony DeLoach, President on Jun 14, 2018 8:00:00 AM

Understanding De-Aeration and Decarbonation in Water Treatment Systems

De-Aeration and decarbonation are two essential processes used to remove carbon dioxide (CO2) and dissolved oxygen (O2) from water streams, particularly in boiler-feed water systems. While both processes share the goal of eliminating CO2, they differ in their approach to removing oxygen. A De-Aeration system focuses on removing both CO2 and O2, while a decarbonation system primarily targets the removal of CO2. Let's delve deeper into these processes to understand their mechanisms and benefits.

In a De-Aeration system, steam is introduced at the bottom of the tower. The inlet feed water is heated to near saturation temperature, minimizing pressure drop and venting limits. This ensures optimal thermal operating efficiency of the tower. The steam acts as a carrier gas, stripping both CO2 and O2 from the water as it rises through the tower. The tower is equipped with an internal distribution system and media packing to enhance the removal of dissolved gases. By the time the water reaches the top of the tower, it has undergone significant de-aeration, resulting in reduced CO2 and O2 levels. This purified water is then ready for entry into the boiler, ensuring efficient and reliable steam generation.

Read More

Topics: media packing, Decarbonation, De-Aeration, carbon dioxide, oxygen, steam, decarbonator

Subscribe to our blog

Recent Posts