.header-container, .body-container, .footer-container { max-width: 1080px; margin: 0 auto;

DELOACH BLOG

Steam Process Water Systems

Posted by Anthony DeLoach, President on Jun 26, 2018 8:06:00 AM

Optimizing Steam Process Water Systems with Degasification Towers

Steam process water systems are integral to various industrial operations, where water is heated and converted into steam. However, ensuring the efficiency and longevity of these systems requires a comprehensive understanding of water chemistry and the implementation of proper treatment methods. In particular, the removal of dissolved gases, such as hydrogen sulfide (H2S), carbon dioxide (CO2), and dissolved oxygen (O2), is crucial. This blog post will delve into the significance of degasification towers in steam process water systems, emphasizing their role in preventing corrosion, enhancing equipment performance, and maintaining water quality in your water and wastewater systems.

The Importance of Removing Dissolved Gases

Dissolved gases in steam process water systems can have detrimental effects on boilers and other critical components. Allowing gases like carbon dioxide (CO2) to remain in the water leads to the formation of carbonic acid, creating a corrosive environment. This corrosion can damage the boiler and reduce its lifespan. Additionally, dissolved gases can impair the efficiency of the system, affecting heat transfer and leading to reduced performance.

Read More

Topics: De-Aeration, carbon dioxide, oxygen, steam, decarbonator, degasifier, carbonic acid

Are All Distribution Systems Equal?

Posted by Anthony DeLoach, President on Jun 21, 2018 8:01:00 AM

Do you think all distribution systems are made equal? 

if you do you may be surprised that there is a lot of variation in manufacturing protocols for aerators, degasifiers, and decarbonators.  Aerators are often found in use at Industrial Water Treatment and municipal water treatment facilities around the globe. 

For water treatment, you may be surprised to learn that one of the key items that separate different types of aerators and decarbonators for water treatment is the type of distribution system it utilizes.  To improve Carbon Dioxide (CO2) or Hydrogen Sulfide (H2S) removal you need to select the best distribution system for the tower and make sure it's maintained. Now, there are many types of aerators in general and the term is used broadly. From floating pond aerators to wastewater aerators, to vertical tower aerators, decarbonators, and degasifiers for industrial water treatment aerators.  We will focus on vertical tower aerators for industrial water treatment.  All types of Aerators and even degasifiers and even decarbonators and Odor Control Scrubbers require some type of distribution system to begin the process of gas transfer and to remove Hydrogen Sulfide (H2S) from water or Carbon Dioxide (CO2).  It is important to evenly distribute the water or chemical solution across the media bed. 

There are several types of distribution systems available and the three most common ones you will see on the marketplace are the “Tray” type, Weir, or the header lateral utilizing gas release “Nozzles”.  

The selection of what type of distribution system is typically driven by the marketing side of who is selling you the tower.  But in terms of real performance a distribution system utilizing a nozzle system will outperform a tray-type distributor.  All packed towers are designed utilizing Henry’s Law Constant” theory of chemistry and what all towers rely upon is some type of method to break the surface tension of the water and expose the molecules of gases so that they either can escape or can be introduced to a reaction agent.

When towers are designed it is important to properly hydraulically load the top of the media bed.  This is considered " Degasification Basics". This is important for many reasons and we will address these points in future updates.  When using a properly designed nozzle distribution system such as a DeLoach Industries header lateral system then you get the benefit of both proper hydraulic load across the bed and you also gain anywhere from 4-10% removal efficiency depending upon the application.  When looking at a chemical scrubber versus a biological scrubber you will notice they too have very different distribution systems. DeLoach Industries, Inc. has learned over its 60 years in business how to maximize gas transfer release.  If designed and built properly the gas release process or interaction process (if designing a scrubber) has already begun “before” it enters the media bed.

Read More

Topics: water treatment issues, aeration, Decarbonation, De-Aeration, decarbonator, degasifier

Understanding Ammonia Hazards in Water Treatment

Posted by Anthony DeLoach, President on Jun 19, 2018 8:05:00 AM

Ammonia (AM) is a common water pollutant that significantly impacts the water process industry.

It is not just polluting water bodies but also aqua wells and humidifiers. Generally, AM is produced from human sweat and urine and created from synthetic ammonia in industrial processes.

Ammonia has three types of amines – primary, secondary, and tertiary – all are toxic for humans and aquatic life.

  • Primary Amine has two carbon and one nitrogen atom, also called methylamine or CHNH2.
  • Secondary Amine has two nitrogen atoms with no carbon atom between them, also called Dimethylamine or CH2(NH)CH3.
  • Tertiary Amine has three nitrogen atoms with no carbon atoms between them; thus, it’s called Trimethylamine or CH3C(NH)CH3.

In natural conditions, primary Amide bacteria produce Amide under high-temperature conditions. In an aqueous solution and soil environments with high pH levels (>6).

Primary amide can form by the dehydrogenation of nitriles, such as acetonitrile, which are further oxidized to form acetic acid. 

Primary amide form by alkaline hydrolysis of nitro compounds such as 2-nitrophenol.

Process systems often need to recognize when the Degasification or Decarbonation system is failing or underperforming.

Read More

Topics: Decarbonation, decarbonator, degasifier, Amine, Ammonia, Deagasification, Filter Media, distribution system, blower motor, process system, frequent inspections

How To Protect Your Pharmaceutical Water

Posted by Anthony DeLoach, President on Jun 12, 2018 12:00:00 AM

Protecting Your Pharmaceutical Water: Ensuring Quality and Efficiency in Water Treatment

In the pharmaceutical industry, the removal of dissolved gases from water is a critical step in the water treatment process. However, it is essential to select the appropriate method of removing these gases, as the wrong choice can have detrimental effects on vital process water equipment such as steam boilers and distillation columns. Failure to address high levels of carbon dioxide (CO2) in the water can lead to the formation of carbonic acid, which corrodes and damages both the steam boiler tubes and distillation columns. To mitigate these risks, the implementation of a degasification tower or "Degasifier" is crucial, as it effectively removes dissolved gases like hydrogen sulfide (H2S) and carbon dioxide (CO2) to acceptable levels below 7 parts per billion (ppb).

Utilizing a degasification tower offers a cost-effective solution to reduce and eliminate gases in the water stream. In comparison, alternative methods such as reverse osmosis (RO) membranes require additional steps, including pH adjustment, to achieve similar results. The conversion of carbon dioxide (CO2) into carbonates can result in increased membrane fouling and elevated capital costs for the RO system. By implementing a degasification system, businesses can achieve optimal performance, minimize membrane fouling, and benefit from cost savings in both capital and operational expenses.

Read More

Topics: degasification, water treatment, hydrogen sulfide (H2S), dissolved gases, pharmaceutical water, carbon dioxide, degasifier, gases, RO membrane, carbonic acid, RO system

Safety Precautions When Entering A Water Treatment Tower Or Tank

Posted by Anthony DeLoach, President on Sep 20, 2017 2:36:58 PM

Water treatment towers and storage tanks are high places that require special precautions when entering. While the majority of people who enter these locations for work can be trusted, there are some hazards that make it more important than usual to follow safety procedures.

These locations can get very hot and humid, and can also be filled with harmful chemicals and microorganisms that can cause serious health issues if inhaled or absorbed through the skin. Therefore, the general standard for workplace safety is much higher when entering locations like these.

Make sure you have read and understood the following information about safety when entering a water treatment plant. It will help you understand how to stay safe and protect yourself from harm when entering a water treatment plant. normal installation, maintenance, or even emergency repairs, it is often required to enter into a water treatment tower (degasifier, air stripper, decarbonator, or clear well/ storage tank). When this occurs, full safety protocols should be followed at all times, in accordance with OSHA regulations.  A tower or tank B classification is a "Confined Space" location. For more information visit the OSHA confined space regulations page.

In addition, there are other safety risks that an operator or technician can be exposed to while inside these types of closed locations. The risk can come from fumes of hydrogen sulfide (H2S), chlorine from an injection line, or a lack of oxygen O2. A proper confined space permit should be prepared and only technicians with proper training and certifications should enter into these types of confined spaces.

Read More

Topics: water treatment issues, water quality, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, safety, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, media packing, scaling, caustic, Safe drinking water, dissolved gases, wastewater, carbon dioxide, degasifier, gases, Ammonia, what is a scrubber, Hydrogen Sulfide formula, Deagasification, Filter Media, DeLoach Industries, Inc., Drinking Water, Clean Water, Contaminated Water, OSHA

What Makes DeLoach Industries Unique?

Posted by Anthony DeLoach, President on Jul 20, 2017 3:43:33 PM

 

Read More

Topics: water treatment issues, water quality, pH levels of water, aeration, water treatment, advanced treatment solutions, fiberglass, About DeLoach Industries, fabrication, biological scrubber, Chemical Odor, media packing, pH levels, Decarbonation, De-Aeration, decarbonator, boiler system, distillation, degasifier, RO system, H2S Degasifier, Fish Farming, Aquaculture, Pisciculture, Biological Odor Control Scrubber, Biological odor control, removal of CO2 from water, Deagasification, decarbonation of water, Sand filters, Filter Media, municipal water systems, greensand, DeLoach Industries, Inc., Drinking Water

Forced Draft Or Induced Draft Degasification Tower?

Posted by Anthony DeLoach, President on Jun 21, 2017 11:24:07 AM

Industrial water treatment systems play a crucial role in maintaining the quality and sustainability of water used in various industrial processes. One of the key challenges faced by industries is the presence of dissolved gases, particularly carbon dioxide (CO2), and corrosive gases like hydrogen sulfide (H2S) in the water. These gases can have detrimental effects on equipment, cause pH imbalances, and even compromise the overall efficiency of industrial processes.

Read More

Topics: water treatment issues, water quality, degasification, water treatment, decarbonator, degasifier, degassed water, Deagasification, decarbonation of water, DeLoach Industries, Inc., Drinking Water, DeLoach Industries, water process system

Subscribe to our blog

Recent Posts