DELOACH BLOG

Relationship of Water Degasification and Decarbonation and pH

Posted by Anthony DeLoach, President on Feb 3, 2020 1:01:00 PM

The need for pH control with water degasification and decarbonation in water treatment includes almost every industry and includes;

The need for pH control with water degasification and decarbonation in water treatment includes almost every industry and includes; Aquaculture, food and beverage, industrial, municipal, and even pisciculture.  In some water treatment applications, harmful gases such as Hydrogen Sulfide (H2S) are removed, while in other applications, Carbon Dioxide (CO2) or a combination of both. In addition, there's a host of other organic and inorganic elements found in water, both naturally occurring and manmade, that require removal during some part of the water treatment process.  

In almost every application of degasification or decarbonation, you will hear or see the term pH used either by need or by the result.  If, as an example, the water treatment application requires the removal of Hydrogen Sulfide (H2S) to be removed either as “free” gas or requires the conversion of Sulfides into (H2S) gas. You will often also see the need to adjust the pH of the water chemistry to maximize both the removal and the conversion to increase the efficiency of the equipment being utilized to remove the hydrogen sulfide, such as a degasification tower or commonly called a degasifier.

So, what is pH?

Water pH is a term used to describe whether or not the water is “acidic” or “basic.”  pH ranges in water can be from 0-14.  0 is the most acidic, and 14 is at the far end and is the most basic, leaving “7” as the neutral state.  A pH of 7 is neither acidic nor basic. So, what causes pH to be acidic?  In nature, the most common cause of a low acidic pH in water is Carbon Dioxide (CO2) which occurs naturally when photosynthesis, decomposition, or respiration occurs in nature.  The increase in CO2 causes an increase in ions, producing a lower pH in a simplified explanation.

How does pH play such a significant role in degasification and decarbonation? 

As mentioned above in the example of the removal of certain harmful elements such as sulfides, sulfates, and free H2S hydrogen sulfide gases, to maximize the removal from water utilizing a degasification tower, it is essential to maintain as close to a pH of 5 as possible.  When the pH rises above 5, the ability to convert and strip the free H2S gas from the water diminishes.  When a degasification tower operates within this specific range and if it has been designed with the higher efficient distribution systems such as the ones utilized by DeLoach Industries, removal efficiencies of 99.999%- 100% can be achieved.   If the pH rises to seven or above, the removal process becomes much more complex, and typically, you will have much lower results.  The pH adjustment during the water treatment process is typically accomplished by adding commercially available acid, such as “sulphuric acid,” one of the most common in the municipal and food and beverage industry.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water treatment, advanced treatment solutions, hydrogen sulfide (H2S), Chemical Odor, pH levels, Decarbonation, dissolved gases, carbon dioxide, degasifier, gases, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture

Hydrogen Sulfide Gas Scrubber

Posted by Anthony DeLoach, President on Jun 28, 2019 2:48:10 PM

Hydrogen Sulfide Chemical Formula and the Molar mass of H2S

H2S is a naturally occurring chemical compound created in nature with the decay of organic material. Hydrogen sulfide is a chemical compound with a molecular formula comprised of (2) hydrogen atoms and (1) one sulfur atom. The formula is displayed as H2S. The gas is a colorless hydride, often known as the “Rotten egg gas.” This gas is very dangerous as it is poisonous and toxic to all life forms. It is also very corrosive and flammable. The H2S molar mass is 34.1 g/mol, with a melting point of -76 F (-60 C) and a melting point of –115.6F or (-82C).

Hydrogen sulfide gas is also created more often from a byproduct of a manufacturing process or the removal of water or wastewater treatment systems. In wastewater, as organic material decays, H2S is released, captured, and treated to protect human lives, reduce corrosion, and reduce odor complaints. Hydrogen sulfide gas is produced during the manufacturing operations at refineries, pulp mills, and mining. These high levels of H2S are released during manufacturing. They must be captured and neutralized to protect human life from unwanted health effects such as pulmonary edemaand prevent excessive corrosion to your system. You cannot even smell the gas at higher concentrations, and it is not distinguishable as the “rotten egg gas,” which makes it even more dangerous and drives the need for hydrogen sulfide scrubbers equipment, fume scrubbers, or odor control scrubbers.

According to the “Agency for Toxic Substance & Disease Registry,” those who work within certain industries are exposed daily to higher levels of hydrogen sulfide gas than the normal public. Because the gas is also heavier than air, it will settle into lower places like manholes, tanks, and basements, and it will travel across the ground filling in low-level areas. To protect the public, OSHA (occupational safety and health administration) has set guidelines and rules known as “Permissible Exposure Limits” (PEL). A PEL is a legal limit a worker may be exposed to a chemical substance. The PEL limit for hydrogen sulfide is ten parts per million (10 ppm) over eight hours.

Read More

Topics: water treatment issues, degasification, odor control, water treatment, advanced treatment solutions, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, dissolved gases, wastewater, decarbonator, degasifier, gases, H2S Degasifier, Hydrogen Sulfide Chemical Formula, Molar mass, Hydrogen Sulfide formula, molar mass h2s, hydrogen sulfide molar mass, hydrogen sulfide gas

The Basics of Water Decarbonation

Posted by Anthony DeLoach, President on Feb 25, 2019 1:04:12 PM

Basics of water decarbonation for dissolved organic carbon.

The water treatment industry continues to develop and evolve and over the past two decades there have been many new developments in technology and even more refinement in existing technologies such as "Degasification". The evolution and advancement of water treatment have been driven by the constantly increasing demand from an increase in population that demand cost-effective solutions and recognition to improve safety with the implementation of NSF 61 standards.

All human cultures on our planet share a single commonality and that is the dependency on water to survive.

Many existing technologies such as "Degasification" have evolved with higher efficiency to meet the demand changes and provide safety to consumers and to the systems. Degasification refers to the removal of dissolved gases from liquids and the science to degasify water is based upon a chemistry equation known as "Henry's Law". The "proportionality factor" is called Henry's law constant" and was developed by William Henry in the early 19th century. Henry's Law states that "the amount of dissolved gas is proportional to its partial pressure in the gas". The most "cost" effective method to perform degasification is with the packed vertical tower called a "Degasifier” or “Decarbonator”.

The key words in this previous sentence for owners, operators, and engineers to focus on is "the most cost-effective" as there is no other process more cost-effective at removing dissolved gases at the lowest cost than the use of a Degasifier or decarbonator. The process of degasification is simple enough to understand. Water is pumped to the top of a vertically constructed tower where it first enters the tower through some type of distribution system at the same time there is a cross current air flowing up from the bottom by a blower located at the bottom of the tower and the air encounters the water and is exhausted at the top of the tower through an exhaust port. There are various types of distributions systems and we will explore these in later discussions. Once the water enters the top of the tower and passes through the distribution system it then travels by gravity downward. The next thing the water encounters is some type of media packing. There are various forms of media packing offered in the degasification industry and each type can offer higher performance or have the ability to deter fouling. The selection of the type, size, and volume is where the “experience, engineering and understanding of each application” comes in to play.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, About DeLoach Industries, water plant, NSF/ANSI 61, hydrogen sulfide (H2S), media packing, pH levels, scaling, caustic, Decarbonation, Safe drinking water, dissolved gases, carbon dioxide, decarbonator, boiler system, degasifier, carbonic acid, H2S Degasifier, Dissolved organic Carbon, co2 dissolved in water

The "Clean Water Professional Award" goes to...

Posted by Anthony DeLoach, President on Nov 5, 2018 1:40:14 PM

On behalf of DeLoach Industries Inc., I would like to thank you for entering our drawing for the first annual "Clean Water Professional Appreciation Award".  As you know we are celebrating our 60th year serving the water and wastewater Industry.

Read More

Topics: water treatment issues, water quality, degasification, odor control, water treatment, biological scrubber, water plant, Chemical Odor, Decarbonation, wastewater

Forced Draft Degasification

Posted by Anthony DeLoach, President on Oct 23, 2018 7:49:53 AM

In the production and purification of water for industry

there are many types of different processes available to remove harmful minerals and gases from the water stream but the most effective process and most cost effective from both a capital investment and operational cost is a “Forced Draft Degasification System” (Degasifier).

Degasification is used in a wide range of water processes for industrial and municipal applications which extend from the production of chemicals to the production of semiconductors and in all applications the need to remove contaminants from the water and dissolved gases is key to achieving the end results needed in the industrial water process. Water from the ground often contains elements such as calcium carbonate, manganese, iron, salts, hydrogen sulfide, and sulfur just to name a few of the basic contaminants and these naturally occurring elements can cause serious damage and consequences to process equipment such as boiler systems, piping, membranes, and cation and anion exchange resins used in the demineralization process.

Calcium carbonate can dissolve in water under certain pH ranges forming carbonic acid and releasing carbon dioxide (CO2) gases. These gases are not only very corrosive to equipment like boiler feed systems and boiler tubes but also attack the actual resin beds found in cation and anion softening and demineralization system causing an increase in regeneration and chemical consumption and resin bed replacement.

By incorporating a Force Draft Degasification system you can remove dissolved gasses

like CO2 and hydrogen sulfide (H2S) to as low as 99.999% and improve the cation and anion system performance, extend the resin bed life, and lower the operating cost of the water treatment process.

Quite often Forced Draft Degasification is utilized “post” treatment to also remove newly formed dissolved gases prior to entering the boiler feed system to prevent corrosion damage within the tubes and feed system and pumps. These gases are easily removed with the forced draft degasifier at a much lower cost than chemical additives or liquid cell degasification that requires higher capital cost and much higher operating cost.

Read More

Topics: water treatment issues, degasification, pH levels of water, iron oxidation, water treatment, water distribution system, aluminum, water plant, odor control scrubber, hydrogen sulfide (H2S), calcium carbonate, media packing, pH levels, Langilier index (LSI), Decarbonation, ION Exchange Resin, dissolved gases, feed water, De-Aeration, wastewater, carbon dioxide, decarbonator, degasifier, carbonic acid, H2S Degasifier

Aqua Farming

Posted by Anthony DeLoach, President on Sep 11, 2018 9:09:00 AM

To enhance and control production and quality

of seafood that is grown and harvested the industry is increasing its focus on the construction of in house aquaculture fish farms commonly referred to as aqua farming. The most popular species of aqua farming continues to be salmon, tilapia, catfish, and carp. With the increase interest in the United States aqua farming facilities have been developing in parts of southern Florida where climate conditions and water conditions are favorable.

When considering several types of fish species to grow for harvest it is important to keep in mind the need to control the quality of the water. If the aqua farm is intended to utilize man made tanks they will depend upon a constant flow of incoming water. If the aqua farm is focusing on salmon than both the water quality and water temperature plays a major role on mortality rates and production yields of the operation.

Having water with too high of hydrogen sulfide, carbon dioxide, total Organic carbons, and even turbidity can increase mortality rates among the younger fish species and is especially critical to salmon.

Having high levels of metals

such as Iron that is identified as either “ferric” (Fe-) or “ferrous” (FE+2) and is naturally occurring within the Florida waters and other parts of the US will cause significant damage to young salmon species because the metal accumulates within the gills of the fish causing suffocation. Other metals are also detrimental to fish including copper, aluminum, arsenic, cadmium, chromium, Lead, manganese, mercury just to name a few and the water quality must be evaluated and tested in the early stages of design to anticipate the required types of process systems needed.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, water treatment, advanced treatment solutions, hydrogen sulfide (H2S), pH levels, Alkalinity, Decarbonation, carbon dioxide, oxygen, decarbonator, degasifier, carbonic acid, H2S Degasifier, Aqua Farming, Fish Farming, Aquaculture, Pisciculture

Caustic Scrubber for Sodium Hydroxide

Posted by Anthony DeLoach, President on Aug 21, 2018 8:51:00 AM

Caustic solution for Sodium hydroxide water treatment

There are many industries that require the use of a caustic scrubber which is considered a chemical scrubber and they range from the municipal industry, mining, semiconductor markets, pulp and paper and chemical refining.  There is a wide variety of industrial processes that generate noxious or corrosive off gases that require treatment and a comparison is made about biological Vs. chemical.  Often biological scrubbers have limitations due to concentrations, composition, or temperature of the contaminants and if the gas stream contains acid fumes then a biological scrubber is quickly ruled out.

The odor control selection is often fraught with choices of capital cost over operational cost and quite often comes down to familiarity from the designer or purchaser.  It is always a good idea to freshen up on the industrial odor control the do’s and don’t’s before selecting the final solution.  If the off gas source that needs to be treated is hydrogen sulfide (H2S) or some other type of gas stream produced by an acid or ammonia it will often require neutralization for human health reasons and to protect equipment or may be required to meet regulatory compliance. Caustic scrubbers may be either vertical or horizontal by design, but both utilize a packed media bed of either random packing or trays to allow the gas fumes to meet the recirculating caustic solution which then forces the reaction to occur.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, pH levels, caustic, wastewater, carbon dioxide, degasifier, gases, caustic solution, sodium hydroxide water treatment

Odor Control Selection

Posted by Anthony DeLoach, President on Aug 16, 2018 9:03:00 AM

What type of Odor Control Scrubber do I select?

It's a common question many customers and design professionals ask in the Odor Control Industry when selecting, engineering, and deciding on the best odor control process to utilize to treat gases and noxious odors. An odor control system is comparable to choosing a car in many ways because you have many different options. Each odor control scrubber comes in different types to address the different variations within the industry.  For example, odor control scrubbers are designed to treat “ammonia” and other ones to treat “acid” off-gases. Odor control scrubbers utilize “acid” or “caustic” as the scrubbing reagent to neutralize an off gas.

Odor control scrubbers also come with different purchase prices, each with different operating costs.  It is always important to analyze the operating cost of the odor control solution you select because several different types may perform equally. Each may have varying initial purchase costs, but you should ask and understand, “what will the continued operating cost” be for the type of odor control system selected?  And how long will the scrubber I selected last before additional costs are needed for any significant repairs to keep it running? When you are a design professional, if you choose an odor control system that is difficult or expensive to maintain, you can be assured you will have continued phone calls from customers looking for answers and solutions.  

The industry may soon change with the adaption of “artificial intelligence” as AI is slowly incorporated into the market.  Companies like DeLoach Industries are now incorporating the first variation of artificial intelligence into their odor control scrubber line of products to help owners and operators with real-time information and data communications.  Remember that many types of odor control systems work and remove odors, but selecting and designing a system that works efficiently and effectively without breaking the bank can be challenging.  A design professional should evaluate the cost of the reagents utilized in an odor control scrubber at any specific location because the cost of “caustic” in one location may vary from another.  Or the cost of “acid” may have different base costs or handling costs and considerations.  For a design professional and the supplier of the system, it is essential to consider what an owner and or their operators will be faced with to maintain the odor control system over the long term and what the anticipated operating cost will be both on a day to day basis and a long term service replacement basis.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), pH levels, degasifier, gases

Using a Biological Scrubber to treat & remove contaminants

Posted by Anthony DeLoach, President on Aug 9, 2018 8:18:00 AM

A Biological Scrubber is a wet odor control scrubber that treats and removes contaminants from an air stream. It utilizes caustic typically to control the pH of the re-circulation solution. There are several types of odor control and chemical fume scrubbers on the market today. Each plays a role in treating noxious or corrosive gases in the industry.

Read More

Topics: water treatment issues, odor control, advanced treatment solutions, biological scrubber, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, dissolved gases, wastewater, carbon dioxide, degasifier, gases, RO system, H2S Degasifier, what is a scrubber

Ammonia Scrubber

Posted by Anthony DeLoach, President on Aug 2, 2018 9:00:00 AM

The type of Odor Control wet scrubber selected for the treatment and neutralization of Ammonia (NH3) gases depends on several variables, including the type and source of the ammonia gas and whether or not it is “Free” ammonia and or unionized. Ammonia is a very miscible and stable molecule with solid hydrogen bonds, making it very soluble in water and difficult to treat without using a properly designed and sized ammonia scrubber. The concentrations, air flow rates, temperature of the gas stream, and chemical reagents being utilized, such as caustic to remove and then treat the ammonia, all play a significant role in the efficiency of the ammonia scrubber system. Unlike other types of “odor control scrubbers,” an ammonia scrubber is much more sensitive to variables such as the gas stream temperature because of the solubility of ammonia.

  Ammonia is produced from nitrogen and hydrogen 

the process is called the Haber Process by combining nitrogen with air and adding pressure, you can make ammonia. It takes about 200 atmospheres of pressure, and the process varies from refinery to refinery. Still, on average, you can only make approximately 15% of ammonia during each pass which takes multiple passes to achieve the 15%. The reaction to make ammonia is exothermic when produced in a refining process. 

However, ammonia is also formed in nature in smaller quantities. Most ammonia (90%) is utilized for fertilizer production, but ammonia can be found in food, pharmaceutical products, and cleaning supplies. When ammonia gas is released into the air, it has a very noxious and pungent odor that can be dangerous to inhale, so often, odor control scrubbers are required to capture and treat the ammonia gas.

Read More

Topics: water treatment issues, water quality, degasification, pH levels of water, odor control, water treatment, advanced treatment solutions, biological scrubber, water plant, odor control scrubber, hydrogen sulfide (H2S), Chemical Odor, pH levels, Decarbonation, dissolved gases, wastewater, degasifier, gases, H2S Degasifier, Ammonia

Subscribe to our blog

Recent Posts